or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

core-arithmetic.mdelementary-functions.mdelliptic-modular-functions.mdindex.mdlinear-algebra.mdmathematical-constants.mdnumerical-calculus.mdpattern-recognition.mdsignal-processing.mdspecial-functions.mdvisualization.md

mathematical-constants.mddocs/

0

# Mathematical Constants

1

2

High-precision mathematical constants including π, e, and various special constants from number theory and analysis. All constants are computed with arbitrary precision matching the current context precision.

3

4

## Capabilities

5

6

### Fundamental Constants

7

8

Basic mathematical constants that appear throughout mathematics.

9

10

```python { .api }

11

# Fundamental constants (accessed as mp.constant_name)

12

mp.pi # π ≈ 3.14159265358979323846...

13

mp.e # Euler's number e ≈ 2.71828182845904523536...

14

mp.ln2 # Natural logarithm of 2 ≈ 0.69314718055994530942...

15

mp.ln10 # Natural logarithm of 10 ≈ 2.30258509299404568402...

16

mp.phi # Golden ratio φ = (1+√5)/2 ≈ 1.61803398874989484820...

17

```

18

19

### Special Mathematical Constants

20

21

Important constants from number theory and analysis.

22

23

```python { .api }

24

# Number theory and analysis constants

25

mp.euler # Euler-Mascheroni constant γ ≈ 0.57721566490153286061...

26

mp.catalan # Catalan's constant G ≈ 0.91596559417721901505...

27

mp.khinchin # Khinchin's constant K ≈ 2.68545200106530644531...

28

mp.glaisher # Glaisher-Kinkelin constant A ≈ 1.28242712910062263688...

29

mp.apery # Apéry's constant ζ(3) ≈ 1.20205690315959428540...

30

```

31

32

### Prime-Related Constants

33

34

Constants related to prime numbers and number theory.

35

36

```python { .api }

37

# Prime number constants

38

mp.twinprime # Twin prime constant ≈ 0.66016181584686957392...

39

mp.mertens # Mertens constant M ≈ 0.26149721284764278375...

40

```

41

42

### Angular and Unit Conversion

43

44

Constants for angle conversion and unit systems.

45

46

```python { .api }

47

# Unit conversion

48

mp.degree # π/180 for degree to radian conversion ≈ 0.01745329251994329577...

49

```

50

51

### Special Values

52

53

Special numerical values used in computations.

54

55

```python { .api }

56

# Special values

57

mp.inf # Positive infinity

58

mp.ninf # Negative infinity (-∞)

59

mp.nan # Not a number (NaN)

60

mp.j # Imaginary unit i = √(-1)

61

mp.eps # Machine epsilon (smallest representable positive number)

62

```

63

64

### Accessing Constants

65

66

All constants automatically adjust to the current precision setting and can be accessed as attributes of the mpmath context.

67

68

```python { .api }

69

# Constants adapt to current precision

70

with mp.workdps(50):

71

high_precision_pi = mp.pi # π with 50 decimal places

72

73

with mp.workdps(100):

74

very_high_precision_e = mp.e # e with 100 decimal places

75

```

76

77

### Constant Relationships

78

79

Mathematical relationships between constants that can be verified with high precision.

80

81

## Usage Examples

82

83

```python

84

import mpmath

85

from mpmath import mp

86

87

# Set different precision levels

88

mp.dps = 30

89

90

# Display fundamental constants

91

print("Fundamental Constants:")

92

print(f"π = {mp.pi}")

93

print(f"e = {mp.e}")

94

print(f"Golden ratio φ = {mp.phi}")

95

print(f"ln(2) = {mp.ln2}")

96

print(f"ln(10) = {mp.ln10}")

97

98

# Special constants

99

print("\nSpecial Constants:")

100

print(f"Euler-Mascheroni γ = {mp.euler}")

101

print(f"Catalan's constant = {mp.catalan}")

102

print(f"Khinchin's constant = {mp.khinchin}")

103

print(f"Glaisher-Kinkelin A = {mp.glaisher}")

104

print(f"Apéry's constant ζ(3) = {mp.apery}")

105

106

# Prime-related constants

107

print("\nPrime-Related Constants:")

108

print(f"Twin prime constant = {mp.twinprime}")

109

print(f"Mertens constant = {mp.mertens}")

110

111

# Unit conversion

112

print("\nUnit Conversion:")

113

print(f"Degrees to radians: π/180 = {mp.degree}")

114

angle_deg = 90

115

angle_rad = angle_deg * mp.degree

116

print(f"{angle_deg}° = {angle_rad} radians")

117

118

# Verify relationships

119

print("\nConstant Relationships:")

120

print(f"φ² - φ - 1 = {mp.phi**2 - mp.phi - 1}") # Should be 0

121

print(f"e^(iπ) + 1 = {mp.exp(mp.j * mp.pi) + 1}") # Euler's identity, should be 0

122

print(f"ζ(2) = π²/6 = {mp.pi**2 / 6}")

123

print(f"Actual ζ(2) = {mp.zeta(2)}")

124

125

# Precision scaling

126

print("\nPrecision Scaling:")

127

with mp.workdps(10):

128

pi_10 = mp.pi

129

print(f"π with 10 digits: {pi_10}")

130

131

with mp.workdps(50):

132

pi_50 = mp.pi

133

print(f"π with 50 digits: {pi_50}")

134

135

with mp.workdps(100):

136

pi_100 = mp.pi

137

print(f"π with 100 digits: {pi_100}")

138

139

# Special values

140

print("\nSpecial Values:")

141

print(f"Positive infinity: {mp.inf}")

142

print(f"Negative infinity: {mp.ninf}")

143

print(f"Not a number: {mp.nan}")

144

print(f"Imaginary unit: {mp.j}")

145

print(f"j² = {mp.j**2}") # Should be -1

146

147

# Machine epsilon

148

print(f"Machine epsilon: {mp.eps}")

149

150

# Using constants in calculations

151

print("\nCalculations with Constants:")

152

# Area of unit circle

153

area = mp.pi * 1**2

154

print(f"Area of unit circle: π = {area}")

155

156

# Compound interest formula: A = P*e^(rt)

157

principal = 1000

158

rate = 0.05 # 5%

159

time = 10

160

amount = principal * mp.exp(rate * time)

161

print(f"Compound interest: {principal} * e^({rate}*{time}) = {amount}")

162

163

# Golden ratio properties

164

print(f"φ = (1 + √5)/2 = {(1 + mp.sqrt(5))/2}")

165

print(f"1/φ = φ - 1 = {1/mp.phi} = {mp.phi - 1}")

166

167

# Trigonometric identities with high precision

168

print(f"sin²(π/6) + cos²(π/6) = {mp.sin(mp.pi/6)**2 + mp.cos(mp.pi/6)**2}")

169

print(f"e^(iπ/4) = {mp.exp(mp.j * mp.pi/4)}")

170

print(f"cos(π/4) + i*sin(π/4) = {mp.cos(mp.pi/4) + mp.j*mp.sin(mp.pi/4)}")

171

172

# Natural logarithm identities

173

print(f"e^(ln(2)) = {mp.exp(mp.ln2)}") # Should be 2

174

print(f"ln(e) = {mp.ln(mp.e)}") # Should be 1

175

print(f"ln(10) = {mp.ln10}")

176

print(f"ln(10)/ln(2) = {mp.ln10/mp.ln2}") # log₂(10)

177

```

178

179

### Historical and Mathematical Context

180

181

These constants have deep mathematical significance:

182

183

- **π (pi)**: Ratio of circumference to diameter of a circle, appears throughout geometry and analysis

184

- **e**: Base of natural logarithm, fundamental in calculus and probability

185

- **γ (Euler-Mascheroni)**: Appears in number theory and analysis, related to harmonic numbers

186

- **φ (Golden ratio)**: Appears in geometry, art, and nature; satisfies φ² = φ + 1

187

- **G (Catalan)**: Arises in combinatorics and number theory

188

- **K (Khinchin)**: Related to continued fraction expansions

189

- **A (Glaisher-Kinkelin)**: Appears in various mathematical series and products

190

- **ζ(3) (Apéry)**: Value of Riemann zeta function at 3, proved irrational by Apéry

191

192

All constants are computed using mpmath's arbitrary precision arithmetic, ensuring accuracy to any requested precision level. The library uses efficient algorithms and series expansions optimized for high-precision computation.