0
# Attribute Generation
1
2
Comprehensive set of functions for generating OpenInference-compliant span attributes for different types of operations including LLM interactions, embeddings, retrievals, and general input/output handling.
3
4
## Capabilities
5
6
### LLM Attributes
7
8
Generate comprehensive attributes for Large Language Model interactions.
9
10
```python { .api }
11
def get_llm_attributes(
12
*,
13
provider: Optional[OpenInferenceLLMProvider] = None,
14
system: Optional[OpenInferenceLLMSystem] = None,
15
model_name: Optional[str] = None,
16
invocation_parameters: Optional[Union[str, Dict[str, Any]]] = None,
17
input_messages: Optional[Sequence[Message]] = None,
18
output_messages: Optional[Sequence[Message]] = None,
19
token_count: Optional[TokenCount] = None,
20
tools: Optional[Sequence[Tool]] = None,
21
) -> Dict[str, AttributeValue]:
22
"""
23
Generate LLM-related span attributes.
24
25
Args:
26
provider: LLM provider (e.g., "openai", "anthropic")
27
system: LLM system (e.g., "openai", "claude")
28
model_name: Model identifier (e.g., "gpt-4", "claude-3")
29
invocation_parameters: Model parameters (temperature, max_tokens, etc.)
30
input_messages: Input messages to the LLM
31
output_messages: Output messages from the LLM
32
token_count: Token usage information
33
tools: Available tools for the LLM
34
35
Returns:
36
Dict[str, AttributeValue]: OpenInference-compliant attributes
37
"""
38
```
39
40
**Usage Example:**
41
42
```python
43
from openinference.instrumentation import get_llm_attributes
44
45
# Complete LLM interaction attributes
46
attributes = get_llm_attributes(
47
provider="openai",
48
model_name="gpt-4",
49
invocation_parameters={"temperature": 0.7, "max_tokens": 150},
50
input_messages=[{"role": "user", "content": "Hello!"}],
51
output_messages=[{"role": "assistant", "content": "Hi there!"}],
52
token_count={"prompt": 10, "completion": 15, "total": 25}
53
)
54
55
span.set_attributes(attributes)
56
```
57
58
### LLM Component Attributes
59
60
Individual functions for specific LLM attribute components.
61
62
```python { .api }
63
def get_llm_provider_attributes(
64
provider: Optional[OpenInferenceLLMProvider],
65
) -> Mapping[str, AttributeValue]:
66
"""Generate LLM provider attributes."""
67
68
def get_llm_system_attributes(
69
system: Optional[OpenInferenceLLMSystem],
70
) -> Mapping[str, AttributeValue]:
71
"""Generate LLM system attributes."""
72
73
def get_llm_model_name_attributes(
74
model_name: Optional[str],
75
) -> Mapping[str, AttributeValue]:
76
"""Generate LLM model name attributes."""
77
78
def get_llm_invocation_parameter_attributes(
79
invocation_parameters: Optional[Union[str, Dict[str, Any]]],
80
) -> Mapping[str, AttributeValue]:
81
"""Generate LLM invocation parameter attributes."""
82
83
def get_llm_input_message_attributes(
84
messages: Optional[Sequence[Message]],
85
) -> Mapping[str, AttributeValue]:
86
"""Generate LLM input message attributes."""
87
88
def get_llm_output_message_attributes(
89
messages: Optional[Sequence[Message]],
90
) -> Mapping[str, AttributeValue]:
91
"""Generate LLM output message attributes."""
92
93
def get_llm_token_count_attributes(
94
token_count: Optional[TokenCount],
95
) -> Mapping[str, AttributeValue]:
96
"""Generate LLM token count attributes."""
97
98
def get_llm_tool_attributes(
99
tools: Optional[Sequence[Tool]],
100
) -> Mapping[str, AttributeValue]:
101
"""Generate LLM tool attributes."""
102
```
103
104
**Usage Example:**
105
106
```python
107
# Generate specific attribute groups
108
provider_attrs = get_llm_provider_attributes("openai")
109
model_attrs = get_llm_model_name_attributes("gpt-4")
110
token_attrs = get_llm_token_count_attributes({"total": 100})
111
112
# Combine as needed
113
combined = {**provider_attrs, **model_attrs, **token_attrs}
114
```
115
116
### Input/Output Attributes
117
118
Generate attributes for general input and output values.
119
120
```python { .api }
121
def get_input_attributes(
122
value: Any,
123
*,
124
mime_type: Optional[OpenInferenceMimeType] = None,
125
) -> Dict[str, AttributeValue]:
126
"""
127
Generate input-related span attributes.
128
129
Args:
130
value: Input value (automatically serialized based on type)
131
mime_type: MIME type override ("text/plain" or "application/json")
132
133
Returns:
134
Dict[str, AttributeValue]: Input attributes including value and MIME type
135
"""
136
137
def get_output_attributes(
138
value: Any,
139
*,
140
mime_type: Optional[OpenInferenceMimeType] = None,
141
) -> Dict[str, AttributeValue]:
142
"""
143
Generate output-related span attributes.
144
145
Args:
146
value: Output value (automatically serialized based on type)
147
mime_type: MIME type override ("text/plain" or "application/json")
148
149
Returns:
150
Dict[str, AttributeValue]: Output attributes including value and MIME type
151
"""
152
```
153
154
**Usage Example:**
155
156
```python
157
# Simple values
158
input_attrs = get_input_attributes("Hello, world!")
159
# Results in: {"input.value": "Hello, world!", "input.mime_type": "text/plain"}
160
161
# Complex data
162
output_data = {"result": [1, 2, 3], "status": "success"}
163
output_attrs = get_output_attributes(output_data)
164
# Results in: {"output.value": '{"result": [1, 2, 3], "status": "success"}', "output.mime_type": "application/json"}
165
166
# Custom MIME type
167
json_attrs = get_input_attributes('{"key": "value"}', mime_type="application/json")
168
```
169
170
### Embedding Attributes
171
172
Generate attributes for embedding operations.
173
174
```python { .api }
175
def get_embedding_attributes(
176
*,
177
model_name: Optional[str] = None,
178
embeddings: Optional[List[Embedding]] = None,
179
) -> Dict[str, AttributeValue]:
180
"""
181
Generate embedding-related span attributes.
182
183
Args:
184
model_name: Embedding model name
185
embeddings: List of embeddings with text and vector data
186
187
Returns:
188
Dict[str, AttributeValue]: Embedding attributes
189
"""
190
```
191
192
**Usage Example:**
193
194
```python
195
embeddings_data = [
196
{"text": "Hello world", "vector": [0.1, 0.2, 0.3]},
197
{"text": "Goodbye", "vector": [0.4, 0.5, 0.6]}
198
]
199
200
embedding_attrs = get_embedding_attributes(
201
model_name="text-embedding-ada-002",
202
embeddings=embeddings_data
203
)
204
```
205
206
### Retrieval Attributes
207
208
Generate attributes for document retrieval operations.
209
210
```python { .api }
211
def get_retriever_attributes(
212
*,
213
documents: List[Document]
214
) -> Dict[str, AttributeValue]:
215
"""
216
Generate retriever-related span attributes.
217
218
Args:
219
documents: Retrieved documents with content, ID, metadata, and scores
220
221
Returns:
222
Dict[str, AttributeValue]: Retrieval attributes
223
"""
224
```
225
226
**Usage Example:**
227
228
```python
229
retrieved_docs = [
230
{
231
"content": "Document content here",
232
"id": "doc-123",
233
"metadata": {"source": "database", "timestamp": "2024-01-01"},
234
"score": 0.95
235
},
236
{
237
"content": "Another document",
238
"id": "doc-456",
239
"score": 0.87
240
}
241
]
242
243
retrieval_attrs = get_retriever_attributes(documents=retrieved_docs)
244
```
245
246
### Reranker Attributes
247
248
Generate attributes for document reranking operations.
249
250
```python { .api }
251
def get_reranker_attributes(
252
*,
253
query: Optional[str] = None,
254
model_name: Optional[str] = None,
255
input_documents: Optional[List[Document]] = None,
256
output_documents: Optional[List[Document]] = None,
257
top_k: Optional[int] = None,
258
) -> Dict[str, AttributeValue]:
259
"""
260
Generate reranker-related span attributes.
261
262
Args:
263
query: Search query used for reranking
264
model_name: Reranker model name
265
input_documents: Documents before reranking
266
output_documents: Documents after reranking
267
top_k: Number of top documents to return
268
269
Returns:
270
Dict[str, AttributeValue]: Reranker attributes
271
"""
272
```
273
274
**Usage Example:**
275
276
```python
277
reranker_attrs = get_reranker_attributes(
278
query="machine learning algorithms",
279
model_name="cross-encoder/ms-marco-MiniLM-L-6-v2",
280
input_documents=candidate_docs,
281
output_documents=reranked_docs,
282
top_k=5
283
)
284
```
285
286
### Context Attributes
287
288
Generate attributes from context managers.
289
290
```python { .api }
291
def get_context_attributes(
292
*,
293
session_id: Optional[str] = None,
294
user_id: Optional[str] = None,
295
metadata: Optional[Union[str, Dict[str, Any]]] = None,
296
tags: Optional[List[str]] = None,
297
) -> Dict[str, AttributeValue]:
298
"""
299
Generate context-related span attributes.
300
301
Args:
302
session_id: Session identifier
303
user_id: User identifier
304
metadata: Custom metadata (dict or JSON string)
305
tags: List of tags
306
307
Returns:
308
Dict[str, AttributeValue]: Context attributes
309
"""
310
311
def get_session_attributes(*, session_id: str) -> Dict[str, AttributeValue]:
312
"""Generate session attributes."""
313
314
def get_user_id_attributes(*, user_id: str) -> Dict[str, AttributeValue]:
315
"""Generate user ID attributes."""
316
317
def get_metadata_attributes(*, metadata: Union[str, Dict[str, Any]]) -> Dict[str, AttributeValue]:
318
"""Generate metadata attributes."""
319
320
def get_tag_attributes(*, tags: List[str]) -> Dict[str, AttributeValue]:
321
"""Generate tag attributes."""
322
```
323
324
**Usage Example:**
325
326
```python
327
# Combined context attributes
328
context_attrs = get_context_attributes(
329
session_id="session-123",
330
user_id="user-456",
331
metadata={"tier": "premium"},
332
tags=["important", "production"]
333
)
334
335
# Individual attribute types
336
session_attrs = get_session_attributes(session_id="session-abc")
337
user_attrs = get_user_id_attributes(user_id="user-xyz")
338
meta_attrs = get_metadata_attributes(metadata={"key": "value"})
339
tag_attrs = get_tag_attributes(tags=["tag1", "tag2"])
340
```
341
342
### Tool Attributes
343
344
Generate attributes for tool operations.
345
346
```python { .api }
347
def get_tool_attributes(
348
*,
349
name: str,
350
description: Optional[str] = None,
351
parameters: Union[str, Dict[str, Any]],
352
) -> Dict[str, AttributeValue]:
353
"""
354
Generate tool attributes.
355
356
Args:
357
name: Tool name
358
description: Tool description
359
parameters: Tool parameters (JSON schema dict or JSON string)
360
361
Returns:
362
Dict[str, AttributeValue]: Tool attributes
363
"""
364
```
365
366
**Usage Example:**
367
368
```python
369
tool_attrs = get_tool_attributes(
370
name="calculator",
371
description="Performs basic arithmetic operations",
372
parameters={
373
"type": "object",
374
"properties": {
375
"operation": {"type": "string", "enum": ["+", "-", "*", "/"]},
376
"a": {"type": "number"},
377
"b": {"type": "number"}
378
},
379
"required": ["operation", "a", "b"]
380
}
381
)
382
```
383
384
### Span Kind Attributes
385
386
Generate span kind attributes for OpenInference span classification.
387
388
```python { .api }
389
def get_span_kind_attributes(kind: OpenInferenceSpanKind) -> Dict[str, AttributeValue]:
390
"""
391
Generate span kind attributes.
392
393
Args:
394
kind: OpenInference span kind ("llm", "chain", "agent", "tool", etc.)
395
396
Returns:
397
Dict[str, AttributeValue]: Span kind attributes
398
"""
399
```
400
401
**Usage Example:**
402
403
```python
404
from openinference.semconv.trace import OpenInferenceSpanKindValues
405
406
# Using enum value
407
llm_kind_attrs = get_span_kind_attributes(OpenInferenceSpanKindValues.LLM)
408
409
# Using string (must be lowercase)
410
chain_kind_attrs = get_span_kind_attributes("chain")
411
```
412
413
## Automatic Serialization
414
415
The attribute generation functions automatically handle serialization:
416
417
- **Strings, numbers, booleans**: Used as-is with `text/plain` MIME type
418
- **Lists, dicts**: JSON-serialized with `application/json` MIME type
419
- **Dataclasses**: Converted to dict then JSON-serialized
420
- **Pydantic models**: Uses `model_dump()` then JSON-serialized
421
- **Other objects**: Converted to string with `text/plain` MIME type
422
423
## Privacy Integration
424
425
All attribute generation functions integrate with TraceConfig for privacy:
426
427
- Attributes are automatically masked based on configuration
428
- Sensitive data can be redacted or excluded entirely
429
- Image data can be truncated to specified limits
430
- Configuration is applied consistently across all functions