or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

tessl/pypi-polars-lts-cpu

Blazingly fast DataFrame library for legacy CPUs without AVX2 support

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/polars-lts-cpu@1.33.x

To install, run

npx @tessl/cli install tessl/pypi-polars-lts-cpu@1.33.0

0

# Polars-LTS-CPU

1

2

A blazingly fast DataFrame library for data manipulation and analysis, specifically compiled for legacy CPUs without AVX2 support. Built in Rust with Python bindings, polars-lts-cpu provides comprehensive DataFrame operations, lazy evaluation capabilities, SQL integration, and extensive I/O support while maintaining compatibility with older hardware that lacks modern SIMD instruction sets.

3

4

## Package Information

5

6

- **Package Name**: polars-lts-cpu

7

- **Language**: Python

8

- **Installation**: `pip install polars-lts-cpu`

9

- **Python Support**: 3.9+

10

- **License**: MIT

11

12

## Core Imports

13

14

```python

15

import polars as pl

16

```

17

18

Common patterns for specific functionality:

19

20

```python

21

# DataFrame and LazyFrame

22

from polars import DataFrame, LazyFrame

23

24

# Core functions

25

from polars import col, lit, when

26

27

# I/O operations

28

from polars import read_csv, read_parquet, scan_csv

29

30

# Data types

31

from polars import Int64, Float64, String, Boolean, Date, Datetime

32

```

33

34

## Basic Usage

35

36

```python

37

import polars as pl

38

39

# Read data from various sources

40

df = pl.read_csv("data.csv")

41

42

# Or create DataFrame from Python data

43

df = pl.DataFrame({

44

"name": ["Alice", "Bob", "Charlie"],

45

"age": [25, 30, 35],

46

"salary": [50000, 60000, 70000]

47

})

48

49

# Basic operations

50

result = (

51

df

52

.filter(pl.col("age") > 25)

53

.with_columns([

54

(pl.col("salary") * 1.1).alias("new_salary"),

55

pl.col("name").str.upper().alias("upper_name")

56

])

57

.sort("age", descending=True)

58

)

59

60

print(result)

61

62

# Lazy evaluation for better performance

63

lazy_result = (

64

df.lazy()

65

.group_by("age")

66

.agg([

67

pl.col("salary").mean().alias("avg_salary"),

68

pl.count().alias("count")

69

])

70

.collect()

71

)

72

73

print(lazy_result)

74

```

75

76

## Architecture

77

78

Polars follows a columnar memory layout with lazy evaluation:

79

80

- **DataFrame**: Eager evaluation data structure for immediate operations

81

- **LazyFrame**: Lazy evaluation with query optimization for better performance

82

- **Series**: One-dimensional data structure (column)

83

- **Expr**: Expression system for building complex transformations

84

- **I/O Layer**: Extensive support for various file formats and databases

85

- **Type System**: Rich data type system with support for complex nested structures

86

87

The design enables memory-efficient processing, streaming capabilities for large datasets, and seamless interoperability with pandas, NumPy, and PyArrow ecosystems.

88

89

## Capabilities

90

91

### Core Classes

92

93

The fundamental data structures for working with tabular data, including DataFrame for eager operations, LazyFrame for optimized query execution, Series for one-dimensional data, Expr for building complex transformations, plus configuration classes for query optimization and engine selection.

94

95

```python { .api }

96

class DataFrame:

97

def __init__(self, data=None, schema=None, **kwargs): ...

98

def select(self, *exprs): ...

99

def filter(self, predicate): ...

100

def group_by(self, *by): ...

101

def sort(self, by, *, descending=False): ...

102

103

class LazyFrame:

104

def select(self, *exprs): ...

105

def filter(self, predicate): ...

106

def collect(self, **kwargs): ...

107

def explain(self, **kwargs): ...

108

109

class Series:

110

def __init__(self, name=None, values=None, dtype=None): ...

111

def sum(self): ...

112

def mean(self): ...

113

def to_frame(self): ...

114

115

class Expr:

116

def alias(self, name): ...

117

def over(self, *partition_by): ...

118

def sum(self): ...

119

def mean(self): ...

120

121

class QueryOptFlags:

122

def __init__(self, *, predicate_pushdown=None, **kwargs): ...

123

@staticmethod

124

def none(**kwargs): ...

125

126

class GPUEngine:

127

def __init__(self): ...

128

```

129

130

[Core Classes](./core-classes.md)

131

132

### Data Types

133

134

Comprehensive type system supporting numeric, text, temporal, and complex nested data types with full type safety and memory efficiency.

135

136

```python { .api }

137

# Numeric types

138

Int8, Int16, Int32, Int64, Int128

139

UInt8, UInt16, UInt32, UInt64

140

Float32, Float64, Decimal

141

142

# Text types

143

String, Utf8, Binary

144

145

# Temporal types

146

Date, Datetime, Time, Duration

147

148

# Complex types

149

List, Array, Struct, Categorical, Enum

150

```

151

152

[Data Types](./data-types.md)

153

154

### I/O Operations

155

156

Extensive support for reading and writing data in various formats including CSV, Parquet, JSON, Arrow IPC, databases, Excel, and cloud storage with streaming capabilities.

157

158

```python { .api }

159

def read_csv(source, **kwargs): ...

160

def read_parquet(source, **kwargs): ...

161

def read_json(source, **kwargs): ...

162

def scan_csv(source, **kwargs): ...

163

def scan_parquet(source, **kwargs): ...

164

165

# Database operations

166

def read_database(query, connection, **kwargs): ...

167

def read_database_uri(query, uri, **kwargs): ...

168

```

169

170

[I/O Operations](./io-operations.md)

171

172

### Functions

173

174

Rich collection of functions for data manipulation including aggregation, lazy operations, range generation, mathematical operations, and utility functions.

175

176

```python { .api }

177

# Column selection and manipulation

178

def col(name): ...

179

def lit(value): ...

180

def when(predicate): ...

181

182

# Aggregation functions

183

def sum(*args): ...

184

def mean(*args): ...

185

def count(*args): ...

186

def max(*args): ...

187

188

# Range functions

189

def arange(start, end, step=1): ...

190

def date_range(start, end, interval): ...

191

```

192

193

[Functions](./functions.md)

194

195

### SQL Functionality

196

197

Native SQL support allowing you to query DataFrames and LazyFrames using familiar SQL syntax with full integration into the polars ecosystem.

198

199

```python { .api }

200

class SQLContext:

201

def register(self, name, frame): ...

202

def execute(self, query): ...

203

204

def sql(query, **kwargs): ...

205

```

206

207

[SQL Functionality](./sql-functionality.md)

208

209

### Configuration and Utilities

210

211

Configuration options, selectors for column operations, string caching for categorical data, and testing utilities for DataFrame comparisons.

212

213

```python { .api }

214

class Config:

215

def set_tbl_rows(self, n): ...

216

def set_tbl_cols(self, n): ...

217

218

# Selectors

219

def by_dtype(*dtypes): ...

220

def numeric(): ...

221

def string(): ...

222

223

# String cache

224

def enable_string_cache(): ...

225

226

class CompatLevel:

227

@staticmethod

228

def newest(): ...

229

@staticmethod

230

def oldest(): ...

231

```

232

233

[Configuration](./configuration.md)

234

235

### Expression Namespaces

236

237

Specialized namespaces for working with different data types including string operations (.str), datetime operations (.dt), list operations (.list), and more.

238

239

```python { .api }

240

# String operations

241

expr.str.contains(pattern)

242

expr.str.replace(pattern, replacement)

243

244

# DateTime operations

245

expr.dt.year()

246

expr.dt.strftime(format)

247

248

# List operations

249

expr.list.len()

250

expr.list.explode()

251

```

252

253

[Expression Namespaces](./expressions.md)

254

255

## Types

256

257

```python { .api }

258

# Core type definitions used across the API

259

from typing import Any, Dict, List, Optional, Union, Sequence

260

from pathlib import Path

261

262

# Common type aliases

263

ColumnNameOrSelector = Union[str, Expr, Sequence[str]]

264

IntoExpr = Union[Expr, str, int, float, bool, Sequence[Any]]

265

SchemaDict = Dict[str, type]

266

TemporalLiteral = Union[date, datetime, time, timedelta, str]

267

```