CtrlK
CommunityDocumentationLog inGet started
Tessl Logo

tessl/pypi-pycuda

Python wrapper for Nvidia CUDA parallel computation API with object cleanup, automatic error checking, and convenient abstractions.

62%

Overall

Evaluation62%

0.94x

Agent success when using this tile

Overview
Eval results
Files

rubric.jsonevals/scenario-6/

{
  "context": "This criteria evaluates how well the engineer uses PyCUDA's context management and synchronization capabilities to implement a GPU context manager. It focuses on proper device initialization, context lifecycle management, synchronization operations, and device property queries.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Device initialization",
      "description": "Uses pycuda.driver.Device to initialize and select the GPU device by device_id in the __init__ method",
      "max_score": 15
    },
    {
      "name": "Context creation",
      "description": "Uses pycuda.driver.Context or pycuda.autoinit to create/initialize a CUDA context in the __enter__ method",
      "max_score": 20
    },
    {
      "name": "Context cleanup",
      "description": "Properly cleans up the context in the __exit__ method using Context.pop() or Context.detach() to release GPU resources",
      "max_score": 20
    },
    {
      "name": "Context synchronization",
      "description": "Uses pycuda.driver.Context.synchronize() or pycuda.driver.Context.get_current().synchronize() in the synchronize method to ensure GPU operations complete",
      "max_score": 25
    },
    {
      "name": "Device properties",
      "description": "Uses Device.name() and Device.total_memory() methods to retrieve device information in the get_device_info method",
      "max_score": 20
    }
  ]
}
tessl i tessl/pypi-pycuda@2025.1.0

tile.json