tessl install tessl/pypi-scikit-learn@1.7.0A comprehensive machine learning library providing supervised and unsupervised learning algorithms with consistent APIs and extensive tools for data preprocessing, model evaluation, and deployment.
Agent Success
Agent success rate when using this tile
87%
Improvement
Agent success rate improvement when using this tile compared to baseline
0.99x
Baseline
Agent success rate without this tile
88%
Tools for uncertainty-aware regression, density-based anomaly scoring, and calibrated classification on tabular data.
@generates
from typing import Iterable, Tuple
ArrayLike = Iterable[Iterable[float]]
VectorLike = Iterable[float]
class ProbabilisticSuite:
def fit_regressor(self, features: ArrayLike, targets: VectorLike, smoothness: float = 1.0) -> None:
"""Train a probabilistic regressor that returns mean and uncertainty estimates."""
def predict_regressor(self, features: ArrayLike) -> Tuple[VectorLike, VectorLike]:
"""Return mean predictions and standard deviations for each sample."""
def fit_density_estimator(self, features: ArrayLike, components: int = 2) -> None:
"""Train a mixture-based density model capable of per-sample log-likelihood scoring."""
def score_density(self, features: ArrayLike) -> VectorLike:
"""Return log-likelihood scores for each sample."""
def fit_calibrated_classifier(self, features: ArrayLike, labels: VectorLike, cv: int = 3, method: str = "sigmoid") -> None:
"""Train a base classifier and wrap it with probability calibration using cross-validation."""
def predict_calibrated_proba(self, features: ArrayLike) -> ArrayLike:
"""Return calibrated class probabilities for each sample."""
def predict_calibrated_labels(self, features: ArrayLike) -> VectorLike:
"""Return class labels based on the calibrated probabilities."""Provides probabilistic regression, mixture-based density estimation, and probability calibration utilities.