or run

tessl search
Log in

Featured skills

Install our featured skills or any skill from GitHub with Tessl package manager.

82%

anthropics/skills

mcp-builder

Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK).

tessl install github:anthropics/skills --skill mcp-builder

Top performing skills & tiles

Evaluate skill

Tessl analyses skills and tiles for their impact on agent success.

86%

c4-architecture

Generate architecture documentation using C4 model Mermaid diagrams. Use when asked to create architecture diagrams, document system architecture, visualize software structure, create C4 diagrams, or generate context/container/component/deployment diagrams. Triggers include "architecture diagram", "C4 diagram", "system context", "container diagram", "component diagram", "deployment diagram", "document architecture", "visualize architecture".

SKILL

86%

promptfoo-evaluation

Configures and runs LLM evaluation using Promptfoo framework. Use when setting up prompt testing, creating evaluation configs (promptfooconfig.yaml), writing Python custom assertions, implementing llm-rubric for LLM-as-judge, or managing few-shot examples in prompts. Triggers on keywords like "promptfoo", "eval", "LLM evaluation", "prompt testing", or "model comparison".

SKILL

86%

planning-with-files

Implements Manus-style file-based planning for complex tasks. Creates task_plan.md, findings.md, and progress.md. Use when starting complex multi-step tasks, research projects, or any task requiring >5 tool calls.

SKILL

86%

spring-boot-actuator

Configure Spring Boot Actuator for production-grade monitoring, health probes, secured management endpoints, and Micrometer metrics across JVM services.

SKILL

86%

vaex

Use this skill for processing and analyzing large tabular datasets (billions of rows) that exceed available RAM. Vaex excels at out-of-core DataFrame operations, lazy evaluation, fast aggregations, efficient visualization of big data, and machine learning on large datasets. Apply when users need to work with large CSV/HDF5/Arrow/Parquet files, perform fast statistics on massive datasets, create visualizations of big data, or build ML pipelines that do not fit in memory.

SKILL

86%

uniprot-database

Direct REST API access to UniProt. Protein searches, FASTA retrieval, ID mapping, Swiss-Prot/TrEMBL. For Python workflows with multiple databases, prefer bioservices (unified interface to 40+ services). Use this for direct HTTP/REST work or UniProt-specific control.

SKILL

86%

torchdrug

PyTorch-native graph neural networks for molecules and proteins. Use when building custom GNN architectures for drug discovery, protein modeling, or knowledge graph reasoning. Best for custom model development, protein property prediction, retrosynthesis. For pre-trained models and diverse featurizers use deepchem; for benchmark datasets use pytdc.

SKILL

86%

statsmodels

Statistical models library for Python. Use when you need specific model classes (OLS, GLM, mixed models, ARIMA) with detailed diagnostics, residuals, and inference. Best for econometrics, time series, rigorous inference with coefficient tables. For guided statistical test selection with APA reporting use statistical-analysis.

SKILL

86%

scanpy

Standard single-cell RNA-seq analysis pipeline. Use for QC, normalization, dimensionality reduction (PCA/UMAP/t-SNE), clustering, differential expression, and visualization. Best for exploratory scRNA-seq analysis with established workflows. For deep learning models use scvi-tools; for data format questions use anndata.

SKILL

86%

rowan

Cloud-based quantum chemistry platform with Python API. Preferred for computational chemistry workflows including pKa prediction, geometry optimization, conformer searching, molecular property calculations, protein-ligand docking (AutoDock Vina), and AI protein cofolding (Chai-1, Boltz-1/2). Use when tasks involve quantum chemistry calculations, molecular property prediction, DFT or semiempirical methods, neural network potentials (AIMNet2), protein-ligand binding predictions, or automated computational chemistry pipelines. Provides cloud compute resources with no local setup required.

SKILL

86%

pyopenms

Complete mass spectrometry analysis platform. Use for proteomics workflows feature detection, peptide identification, protein quantification, and complex LC-MS/MS pipelines. Supports extensive file formats and algorithms. Best for proteomics, comprehensive MS data processing. For simple spectral comparison and metabolite ID use matchms.

SKILL

86%

pylabrobot

Vendor-agnostic lab automation framework. Use when controlling multiple equipment types (Hamilton, Tecan, Opentrons, plate readers, pumps) or needing unified programming across different vendors. Best for complex workflows, multi-vendor setups, simulation. For Opentrons-only protocols with official API, opentrons-integration may be simpler.

SKILL

Can't find what you're looking for? Evaluate a missing skill, or if you're looking for agent context for an open source dependency, request a tile.