or run

tessl search
Log in

Featured skills

Install our featured skills or any skill from GitHub with Tessl package manager.

82%

anthropics/skills

mcp-builder

Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK).

tessl install github:anthropics/skills --skill mcp-builder

Top performing skills & tiles

Evaluate skill

Tessl analyses skills and tiles for their impact on agent success.

86%

protocolsio-integration

Integration with protocols.io API for managing scientific protocols. This skill should be used when working with protocols.io to search, create, update, or publish protocols; manage protocol steps and materials; handle discussions and comments; organize workspaces; upload and manage files; or integrate protocols.io functionality into workflows. Applicable for protocol discovery, collaborative protocol development, experiment tracking, lab protocol management, and scientific documentation.

SKILL

86%

pennylane

Hardware-agnostic quantum ML framework with automatic differentiation. Use when training quantum circuits via gradients, building hybrid quantum-classical models, or needing device portability across IBM/Google/Rigetti/IonQ. Best for variational algorithms (VQE, QAOA), quantum neural networks, and integration with PyTorch/JAX/TensorFlow. For hardware-specific optimizations use qiskit (IBM) or cirq (Google); for open quantum systems use qutip.

SKILL

86%

modal

Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.

SKILL

86%

matlab

MATLAB and GNU Octave numerical computing for matrix operations, data analysis, visualization, and scientific computing. Use when writing MATLAB/Octave scripts for linear algebra, signal processing, image processing, differential equations, optimization, statistics, or creating scientific visualizations. Also use when the user needs help with MATLAB syntax, functions, or wants to convert between MATLAB and Python code. Scripts can be executed with MATLAB or the open-source GNU Octave interpreter.

SKILL

86%

lamindb

This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.

SKILL

86%

kegg-database

Direct REST API access to KEGG (academic use only). Pathway analysis, gene-pathway mapping, metabolic pathways, drug interactions, ID conversion. For Python workflows with multiple databases, prefer bioservices. Use this for direct HTTP/REST work or KEGG-specific control.

SKILL

86%

gtars

High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.

SKILL

86%

geniml

This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.

SKILL

86%

fluidsim

Framework for computational fluid dynamics simulations using Python. Use when running fluid dynamics simulations including Navier-Stokes equations (2D/3D), shallow water equations, stratified flows, or when analyzing turbulence, vortex dynamics, or geophysical flows. Provides pseudospectral methods with FFT, HPC support, and comprehensive output analysis.

SKILL

86%

diffdock

Diffusion-based molecular docking. Predict protein-ligand binding poses from PDB/SMILES, confidence scores, virtual screening, for structure-based drug design. Not for affinity prediction.

SKILL

86%

dask

Distributed computing for larger-than-RAM pandas/NumPy workflows. Use when you need to scale existing pandas/NumPy code beyond memory or across clusters. Best for parallel file processing, distributed ML, integration with existing pandas code. For out-of-core analytics on single machine use vaex; for in-memory speed use polars.

SKILL

86%

clinvar-database

Query NCBI ClinVar for variant clinical significance. Search by gene/position, interpret pathogenicity classifications, access via E-utilities API or FTP, annotate VCFs, for genomic medicine.

SKILL

Can't find what you're looking for? Evaluate a missing skill, or if you're looking for agent context for an open source dependency, request a tile.