or run

tessl search
Log in

foundry-sdk-python

tessl install https://github.com/microsoft/agent-skills --skill foundry-sdk-python

github.com/microsoft/agent-skills

Build AI applications using the Azure AI Projects Python SDK (azure-ai-projects). Use when working with Foundry project clients, creating versioned agents with PromptAgentDefinition, running evaluations, managing connections/deployments/datasets/indexes, or using OpenAI-compatible clients. This is the high-level Foundry SDK - for low-level agent operations, use azure-ai-agents-python skill.

Average Score

98%

Content

100%

Description

100%

SKILL.md
Review
Evals

Azure AI Projects Python SDK (Foundry SDK)

Build AI applications on Azure AI Foundry using the azure-ai-projects SDK.

Installation

pip install azure-ai-projects azure-identity

Environment Variables

AZURE_AI_PROJECT_ENDPOINT="https://<resource>.services.ai.azure.com/api/projects/<project>"
AZURE_AI_MODEL_DEPLOYMENT_NAME="gpt-4o-mini"

Authentication

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient

credential = DefaultAzureCredential()
client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=credential,
)

Client Operations Overview

OperationAccessPurpose
client.agents.agents.*Agent CRUD, versions, threads, runs
client.connections.connections.*List/get project connections
client.deployments.deployments.*List model deployments
client.datasets.datasets.*Dataset management
client.indexes.indexes.*Index management
client.evaluations.evaluations.*Run evaluations
client.red_teams.red_teams.*Red team operations

Two Client Approaches

1. AIProjectClient (Native Foundry)

from azure.ai.projects import AIProjectClient

client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

# Use Foundry-native operations
agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="my-agent",
    instructions="You are helpful.",
)

2. OpenAI-Compatible Client

# Get OpenAI-compatible client from project
openai_client = client.get_openai_client()

# Use standard OpenAI API
response = openai_client.chat.completions.create(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    messages=[{"role": "user", "content": "Hello!"}],
)

Agent Operations

Create Agent (Basic)

agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="my-agent",
    instructions="You are a helpful assistant.",
)

Create Agent with Tools

from azure.ai.agents import CodeInterpreterTool, FileSearchTool

agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="tool-agent",
    instructions="You can execute code and search files.",
    tools=[CodeInterpreterTool(), FileSearchTool()],
)

Versioned Agents with PromptAgentDefinition

from azure.ai.projects.models import PromptAgentDefinition

# Create a versioned agent
agent_version = client.agents.create_version(
    agent_name="customer-support-agent",
    definition=PromptAgentDefinition(
        model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
        instructions="You are a customer support specialist.",
        tools=[],  # Add tools as needed
    ),
    version_label="v1.0",
)

See references/agents.md for detailed agent patterns.

Tools Overview

ToolClassUse Case
Code InterpreterCodeInterpreterToolExecute Python, generate files
File SearchFileSearchToolRAG over uploaded documents
Bing GroundingBingGroundingToolWeb search (requires connection)
Azure AI SearchAzureAISearchToolSearch your indexes
Function CallingFunctionToolCall your Python functions
OpenAPIOpenApiToolCall REST APIs
MCPMcpToolModel Context Protocol servers
Memory SearchMemorySearchToolSearch agent memory stores
SharePointSharepointGroundingToolSearch SharePoint content

See references/tools.md for all tool patterns.

Thread and Message Flow

# 1. Create thread
thread = client.agents.threads.create()

# 2. Add message
client.agents.messages.create(
    thread_id=thread.id,
    role="user",
    content="What's the weather like?",
)

# 3. Create and process run
run = client.agents.runs.create_and_process(
    thread_id=thread.id,
    agent_id=agent.id,
)

# 4. Get response
if run.status == "completed":
    messages = client.agents.messages.list(thread_id=thread.id)
    for msg in messages:
        if msg.role == "assistant":
            print(msg.content[0].text.value)

Connections

# List all connections
connections = client.connections.list()
for conn in connections:
    print(f"{conn.name}: {conn.connection_type}")

# Get specific connection
connection = client.connections.get(connection_name="my-search-connection")

See references/connections.md for connection patterns.

Deployments

# List available model deployments
deployments = client.deployments.list()
for deployment in deployments:
    print(f"{deployment.name}: {deployment.model}")

See references/deployments.md for deployment patterns.

Datasets and Indexes

# List datasets
datasets = client.datasets.list()

# List indexes
indexes = client.indexes.list()

See references/datasets-indexes.md for data operations.

Evaluation

# Using OpenAI client for evals
openai_client = client.get_openai_client()

# Create evaluation with built-in evaluators
eval_run = openai_client.evals.runs.create(
    eval_id="my-eval",
    name="quality-check",
    data_source={
        "type": "custom",
        "item_references": [{"item_id": "test-1"}],
    },
    testing_criteria=[
        {"type": "fluency"},
        {"type": "task_adherence"},
    ],
)

See references/evaluation.md for evaluation patterns.

Async Client

from azure.ai.projects.aio import AIProjectClient

async with AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
) as client:
    agent = await client.agents.create_agent(...)
    # ... async operations

See references/async-patterns.md for async patterns.

Memory Stores

# Create memory store for agent
memory_store = client.agents.create_memory_store(
    name="conversation-memory",
)

# Attach to agent for persistent memory
agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="memory-agent",
    tools=[MemorySearchTool()],
    tool_resources={"memory": {"store_ids": [memory_store.id]}},
)

Best Practices

  1. Use context managers for async client: async with AIProjectClient(...) as client:
  2. Clean up agents when done: client.agents.delete_agent(agent.id)
  3. Use create_and_process for simple runs, streaming for real-time UX
  4. Use versioned agents for production deployments
  5. Prefer connections for external service integration (AI Search, Bing, etc.)

SDK Comparison

Featureazure-ai-projectsazure-ai-agents
LevelHigh-level (Foundry)Low-level (Agents)
ClientAIProjectClientAgentsClient
Versioningcreate_version()Not available
ConnectionsYesNo
DeploymentsYesNo
Datasets/IndexesYesNo
EvaluationVia OpenAI clientNo
When to useFull Foundry integrationStandalone agent apps

Reference Files