CtrlK
CommunityDocumentationLog inGet started
Tessl Logo

twitter-algorithm-optimizer

tessl i github:ComposioHQ/awesome-claude-skills --skill twitter-algorithm-optimizer

Analyze and optimize tweets for maximum reach using Twitter's open-source algorithm insights. Rewrite and edit user tweets to improve engagement and visibility based on how the recommendation system ranks content.

61%

Overall

Validation

Implementation

Activation

SKILL.md
Review
Evals

Validation

88%
CriteriaDescriptionResult

skill_md_line_count

SKILL.md line count is 327 (<= 500)

Pass

frontmatter_valid

YAML frontmatter is valid

Pass

name_field

'name' field is valid: 'twitter-algorithm-optimizer'

Pass

description_field

'description' field is valid (213 chars)

Pass

description_voice

'description' uses third person voice

Pass

description_trigger_hint

Description may be missing an explicit 'when to use' trigger hint (e.g., 'Use when...')

Warning

compatibility_field

'compatibility' field not present (optional)

Pass

allowed_tools_field

'allowed-tools' field not present (optional)

Pass

metadata_version

'metadata' field is not a dictionary

Warning

metadata_field

'metadata' field not present (optional)

Pass

license_field

'license' field is present: AGPL-3.0 (referencing Twitter's algorithm source)

Pass

frontmatter_unknown_keys

No unknown frontmatter keys found

Pass

body_present

SKILL.md body is present

Pass

body_examples

Examples detected (code fence or 'Example' wording)

Pass

body_output_format

Output/return/format terms detected

Pass

body_steps

Step-by-step structure detected (ordered list)

Pass

Total

14

/

16

Passed

Implementation

42%

The skill provides genuinely actionable optimization guidance with excellent concrete examples showing before/after tweet transformations. However, it suffers from severe verbosity—explaining Twitter's algorithm architecture in exhaustive detail that could be condensed or moved to reference files. The lack of progressive disclosure and validation steps for measuring optimization success limit its effectiveness.

Suggestions

  • Reduce the 'How It Works: Twitter's Algorithm Architecture' section to a brief summary and move detailed explanations to a separate ALGORITHM_REFERENCE.md file
  • Cut explanatory prose that describes what Claude already understands (e.g., what engagement signals are, why communities matter) and keep only the actionable patterns
  • Add a validation step to the workflow: 'After posting, track engagement metrics for 24-48 hours and compare against your baseline to verify optimization worked'
  • Split examples into a separate EXAMPLES.md file and keep only 1-2 representative examples in the main skill
DimensionReasoningScore

Conciseness

Extremely verbose at ~350+ lines with extensive explanations of Twitter's algorithm architecture that Claude could infer or doesn't need spelled out in such detail. Concepts like 'engagement signals' and 'community resonance' are over-explained with redundant examples.

1 / 3

Actionability

Provides concrete before/after tweet examples with clear optimization patterns. The step-by-step optimization process and specific signal triggers (likes, replies, retweets) give executable guidance that can be directly applied.

3 / 3

Workflow Clarity

The 4-step optimization process is clearly sequenced, but lacks validation checkpoints. There's no feedback loop for testing whether optimizations actually improved performance or how to iterate based on results.

2 / 3

Progressive Disclosure

Monolithic wall of text with no references to external files. All content is inline despite being lengthy enough to warrant splitting into separate reference documents (e.g., algorithm architecture, examples, best practices).

1 / 3

Total

7

/

12

Passed

Activation

68%

This description effectively communicates specific capabilities around Twitter optimization with concrete actions and a clear methodology. However, it lacks explicit trigger guidance ('Use when...') and misses some natural keyword variations users might employ. The description would benefit from adding when-clauses and broader trigger terms.

Suggestions

  • Add a 'Use when...' clause with trigger terms like 'optimize my tweet', 'improve engagement', 'make this go viral', 'Twitter algorithm'
  • Include keyword variations users naturally say: 'X' (Twitter's new name), 'post', 'thread', 'viral', 'social media engagement'
DimensionReasoningScore

Specificity

Lists multiple specific concrete actions: 'Analyze and optimize tweets', 'Rewrite and edit user tweets', 'improve engagement and visibility', with clear methodology reference to 'Twitter's open-source algorithm insights' and 'recommendation system ranks content'.

3 / 3

Completeness

Clearly answers 'what' (analyze/optimize/rewrite tweets for engagement) but lacks an explicit 'Use when...' clause or equivalent trigger guidance to indicate when Claude should select this skill.

2 / 3

Trigger Term Quality

Contains relevant keywords like 'tweets', 'Twitter', 'engagement', 'reach', 'visibility', but missing common variations users might say like 'X', 'post', 'viral', 'thread', or 'social media'.

2 / 3

Distinctiveness Conflict Risk

Clear niche focused specifically on Twitter/tweet optimization using algorithm insights - distinct from general social media or writing skills, with specific platform and methodology focus.

3 / 3

Total

10

/

12

Passed

Reviewed

Table of Contents

ValidationImplementationActivation

Is this your skill?

If you maintain this skill, you can claim it as your own. Once claimed, you can manage eval scenarios, bundle related skills, attach documentation or rules, and ensure cross-agent compatibility.