Status: Experimental | Version: 0.2.0 | Last Updated: 2025-01-27
This skill tests parallel three-layer cognitive analysis.
Instead of sequential analysis, this skill launches three parallel analyzers - one for each cognitive layer - then synthesizes their results.
User Question
│
▼
┌─────────────────────────────────────────────────────┐
│ meta-cognition-parallel │
│ (Coordinator) │
└─────────────────────────────────────────────────────┘
│
├─── Layer 1 ──► Language Mechanics ──► L1 Result
│
├─── Layer 2 ──► Design Choices ──► L2 Result
│ ├── Parallel (Agent Mode)
│ │ or Sequential (Inline)
└─── Layer 3 ──► Domain Constraints ──► L3 Result
│
▼
┌─────────────────────────────────────────────────────┐
│ Cross-Layer Synthesis │
│ (In main context with all results) │
└─────────────────────────────────────────────────────┘
│
▼
Domain-Correct Architectural Solution/meta-parallel <your Rust question>Example:
/meta-parallel 我的交易系统报 E0382 错误,应该用 clone 吗?CRITICAL: Check agent file availability first to determine execution mode.
Try to read layer analyzer files:
../../agents/layer1-analyzer.md../../agents/layer2-analyzer.md../../agents/layer3-analyzer.mdWhen all layer analyzer files exist at ../../agents/:
Extract from $ARGUMENTS:
CRITICAL: Launch all three Tasks in a SINGLE message to enable parallel execution.
Read agent files, then launch in parallel:
Task(
subagent_type: "general-purpose",
run_in_background: true,
prompt: <content of ../../agents/layer1-analyzer.md>
+ "\n\n## User Query\n" + $ARGUMENTS
)
Task(
subagent_type: "general-purpose",
run_in_background: true,
prompt: <content of ../../agents/layer2-analyzer.md>
+ "\n\n## User Query\n" + $ARGUMENTS
)
Task(
subagent_type: "general-purpose",
run_in_background: true,
prompt: <content of ../../agents/layer3-analyzer.md>
+ "\n\n## User Query\n" + $ARGUMENTS
)Wait for all three agents to complete. Each returns structured analysis.
With all three results, perform synthesis per template below.
When layer analyzer files are NOT available, execute analysis directly:
Same as Agent Mode - extract question, code, and domain hints from $ARGUMENTS.
Analyze the Rust language mechanics involved:
## Layer 1: Language Mechanics
**Error/Pattern Identified:**
- Error code: E0XXX (if applicable)
- Pattern: ownership/borrowing/lifetime/etc.
**Root Cause:**
[Explain why this error occurs in terms of Rust's ownership model]
**Language-Level Solutions:**
1. [Solution 1]: description
2. [Solution 2]: description
**Confidence:** HIGH | MEDIUM | LOW
**Reasoning:** [Why this confidence level]Focus areas:
Analyze the design patterns and trade-offs:
## Layer 2: Design Choices
**Design Pattern Context:**
- Current approach: [What pattern is being used]
- Problem: [Why it conflicts with Rust's rules]
**Design Alternatives:**
| Pattern | Pros | Cons | When to Use |
|---------|------|------|-------------|
| Pattern A | ... | ... | ... |
| Pattern B | ... | ... | ... |
**Recommended Pattern:**
[Which pattern fits best and why]
**Confidence:** HIGH | MEDIUM | LOW
**Reasoning:** [Why this confidence level]Focus areas:
Analyze domain-specific requirements:
## Layer 3: Domain Constraints
**Domain Identified:** [trading/fintech | web | CLI | embedded | etc.]
**Domain-Specific Requirements:**
- [ ] Performance: [requirements]
- [ ] Safety: [requirements]
- [ ] Concurrency: [requirements]
- [ ] Auditability: [requirements]
**Domain Best Practices:**
1. [Best practice 1]
2. [Best practice 2]
**Constraints on Solution:**
- MUST: [hard requirements]
- SHOULD: [soft requirements]
- AVOID: [anti-patterns for this domain]
**Confidence:** HIGH | MEDIUM | LOW
**Reasoning:** [Why this confidence level]Focus areas:
Combine all three layers:
## Cross-Layer Synthesis
### Layer Results Summary
| Layer | Key Finding | Confidence |
|-------|-------------|------------|
| L1 (Mechanics) | [Summary] | [Level] |
| L2 (Design) | [Summary] | [Level] |
| L3 (Domain) | [Summary] | [Level] |
### Cross-Layer Reasoning
1. **L3 → L2:** [How domain constraints affect design choice]
2. **L2 → L1:** [How design choice determines mechanism]
3. **L1 ← L3:** [Direct domain impact on language features]
### Synthesized Recommendation
**Problem:** [Restated with full context]
**Solution:** [Domain-correct architectural solution]
**Rationale:**
- Domain requires: [L3 constraint]
- Design pattern: [L2 pattern]
- Mechanism: [L1 implementation]
### Confidence Assessment
- **Overall:** HIGH | MEDIUM | LOW
- **Limiting Factor:** [Which layer had lowest confidence]Both modes produce the same output format:
# Three-Layer Meta-Cognition Analysis
> Query: [User's question]
---
## Layer 1: Language Mechanics
[L1 analysis result]
---
## Layer 2: Design Choices
[L2 analysis result]
---
## Layer 3: Domain Constraints
[L3 analysis result]
---
## Cross-Layer Synthesis
### Reasoning ChainL3 Domain: [Constraint] ↓ implies L2 Design: [Pattern] ↓ implemented via L1 Mechanism: [Feature]
### Final Recommendation
**Do:** [Recommended approach]
**Don't:** [What to avoid]
**Code Pattern:**
```rust
// Recommended implementationAnalysis performed by meta-cognition-parallel v0.2.0 (experimental)
---
## Test Scenarios
### Test 1: Trading System E0382/meta-parallel 交易系统报 E0382,trade record 被 move 了
Expected: L3 identifies FinTech constraints → L2 suggests shared immutable → L1 recommends Arc<T>
### Test 2: Web API Concurrency/meta-parallel Web API 中多个 handler 需要共享数据库连接池
Expected: L3 identifies Web constraints → L2 suggests connection pooling → L1 recommends Arc<Pool>
### Test 3: CLI Tool Config/meta-parallel CLI 工具如何处理配置文件和命令行参数的优先级
Expected: L3 identifies CLI constraints → L2 suggests config precedence pattern → L1 recommends builder pattern
---
## Error Handling
| Error | Cause | Solution |
|-------|-------|----------|
| Agent files not found | Skills-only install | Use inline mode (sequential) |
| Agent timeout | Complex analysis | Wait longer or use inline mode |
| Incomplete layer result | Agent issue | Fill in with inline analysis |
## Limitations
- **Agent Mode:** Parallel execution, faster but requires plugin install
- **Inline Mode:** Sequential execution, slower but works everywhere
- Cross-layer synthesis quality depends on result structure
- May have higher latency than simple single-layer analysis
## Feedback
This is experimental. Please report issues and suggestions to improve the three-layer analysis approach.If you maintain this skill, you can claim it as your own. Once claimed, you can manage eval scenarios, bundle related skills, attach documentation or rules, and ensure cross-agent compatibility.