CtrlK
CommunityDocumentationLog inGet started
Tessl Logo

cc-skill-project-guidelines-example

tessl i github:sickn33/antigravity-awesome-skills --skill cc-skill-project-guidelines-example

Project Guidelines Skill (Example)

49%

Overall

SKILL.md
Review
Evals

Project Guidelines Skill (Example)

This is an example of a project-specific skill. Use this as a template for your own projects.

Based on a real production application: Zenith - AI-powered customer discovery platform.


When to Use

Reference this skill when working on the specific project it's designed for. Project skills contain:

  • Architecture overview
  • File structure
  • Code patterns
  • Testing requirements
  • Deployment workflow

Architecture Overview

Tech Stack:

  • Frontend: Next.js 15 (App Router), TypeScript, React
  • Backend: FastAPI (Python), Pydantic models
  • Database: Supabase (PostgreSQL)
  • AI: Claude API with tool calling and structured output
  • Deployment: Google Cloud Run
  • Testing: Playwright (E2E), pytest (backend), React Testing Library

Services:

┌─────────────────────────────────────────────────────────────┐
│                         Frontend                            │
│  Next.js 15 + TypeScript + TailwindCSS                     │
│  Deployed: Vercel / Cloud Run                              │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│                         Backend                             │
│  FastAPI + Python 3.11 + Pydantic                          │
│  Deployed: Cloud Run                                       │
└─────────────────────────────────────────────────────────────┘
                              │
              ┌───────────────┼───────────────┐
              ▼               ▼               ▼
        ┌──────────┐   ┌──────────┐   ┌──────────┐
        │ Supabase │   │  Claude  │   │  Redis   │
        │ Database │   │   API    │   │  Cache   │
        └──────────┘   └──────────┘   └──────────┘

File Structure

project/
├── frontend/
│   └── src/
│       ├── app/              # Next.js app router pages
│       │   ├── api/          # API routes
│       │   ├── (auth)/       # Auth-protected routes
│       │   └── workspace/    # Main app workspace
│       ├── components/       # React components
│       │   ├── ui/           # Base UI components
│       │   ├── forms/        # Form components
│       │   └── layouts/      # Layout components
│       ├── hooks/            # Custom React hooks
│       ├── lib/              # Utilities
│       ├── types/            # TypeScript definitions
│       └── config/           # Configuration
│
├── backend/
│   ├── routers/              # FastAPI route handlers
│   ├── models.py             # Pydantic models
│   ├── main.py               # FastAPI app entry
│   ├── auth_system.py        # Authentication
│   ├── database.py           # Database operations
│   ├── services/             # Business logic
│   └── tests/                # pytest tests
│
├── deploy/                   # Deployment configs
├── docs/                     # Documentation
└── scripts/                  # Utility scripts

Code Patterns

API Response Format (FastAPI)

from pydantic import BaseModel
from typing import Generic, TypeVar, Optional

T = TypeVar('T')

class ApiResponse(BaseModel, Generic[T]):
    success: bool
    data: Optional[T] = None
    error: Optional[str] = None

    @classmethod
    def ok(cls, data: T) -> "ApiResponse[T]":
        return cls(success=True, data=data)

    @classmethod
    def fail(cls, error: str) -> "ApiResponse[T]":
        return cls(success=False, error=error)

Frontend API Calls (TypeScript)

interface ApiResponse<T> {
  success: boolean
  data?: T
  error?: string
}

async function fetchApi<T>(
  endpoint: string,
  options?: RequestInit
): Promise<ApiResponse<T>> {
  try {
    const response = await fetch(`/api${endpoint}`, {
      ...options,
      headers: {
        'Content-Type': 'application/json',
        ...options?.headers,
      },
    })

    if (!response.ok) {
      return { success: false, error: `HTTP ${response.status}` }
    }

    return await response.json()
  } catch (error) {
    return { success: false, error: String(error) }
  }
}

Claude AI Integration (Structured Output)

from anthropic import Anthropic
from pydantic import BaseModel

class AnalysisResult(BaseModel):
    summary: str
    key_points: list[str]
    confidence: float

async def analyze_with_claude(content: str) -> AnalysisResult:
    client = Anthropic()

    response = client.messages.create(
        model="claude-sonnet-4-5-20250514",
        max_tokens=1024,
        messages=[{"role": "user", "content": content}],
        tools=[{
            "name": "provide_analysis",
            "description": "Provide structured analysis",
            "input_schema": AnalysisResult.model_json_schema()
        }],
        tool_choice={"type": "tool", "name": "provide_analysis"}
    )

    # Extract tool use result
    tool_use = next(
        block for block in response.content
        if block.type == "tool_use"
    )

    return AnalysisResult(**tool_use.input)

Custom Hooks (React)

import { useState, useCallback } from 'react'

interface UseApiState<T> {
  data: T | null
  loading: boolean
  error: string | null
}

export function useApi<T>(
  fetchFn: () => Promise<ApiResponse<T>>
) {
  const [state, setState] = useState<UseApiState<T>>({
    data: null,
    loading: false,
    error: null,
  })

  const execute = useCallback(async () => {
    setState(prev => ({ ...prev, loading: true, error: null }))

    const result = await fetchFn()

    if (result.success) {
      setState({ data: result.data!, loading: false, error: null })
    } else {
      setState({ data: null, loading: false, error: result.error! })
    }
  }, [fetchFn])

  return { ...state, execute }
}

Testing Requirements

Backend (pytest)

# Run all tests
poetry run pytest tests/

# Run with coverage
poetry run pytest tests/ --cov=. --cov-report=html

# Run specific test file
poetry run pytest tests/test_auth.py -v

Test structure:

import pytest
from httpx import AsyncClient
from main import app

@pytest.fixture
async def client():
    async with AsyncClient(app=app, base_url="http://test") as ac:
        yield ac

@pytest.mark.asyncio
async def test_health_check(client: AsyncClient):
    response = await client.get("/health")
    assert response.status_code == 200
    assert response.json()["status"] == "healthy"

Frontend (React Testing Library)

# Run tests
npm run test

# Run with coverage
npm run test -- --coverage

# Run E2E tests
npm run test:e2e

Test structure:

import { render, screen, fireEvent } from '@testing-library/react'
import { WorkspacePanel } from './WorkspacePanel'

describe('WorkspacePanel', () => {
  it('renders workspace correctly', () => {
    render(<WorkspacePanel />)
    expect(screen.getByRole('main')).toBeInTheDocument()
  })

  it('handles session creation', async () => {
    render(<WorkspacePanel />)
    fireEvent.click(screen.getByText('New Session'))
    expect(await screen.findByText('Session created')).toBeInTheDocument()
  })
})

Deployment Workflow

Pre-Deployment Checklist

  • All tests passing locally
  • npm run build succeeds (frontend)
  • poetry run pytest passes (backend)
  • No hardcoded secrets
  • Environment variables documented
  • Database migrations ready

Deployment Commands

# Build and deploy frontend
cd frontend && npm run build
gcloud run deploy frontend --source .

# Build and deploy backend
cd backend
gcloud run deploy backend --source .

Environment Variables

# Frontend (.env.local)
NEXT_PUBLIC_API_URL=https://api.example.com
NEXT_PUBLIC_SUPABASE_URL=https://xxx.supabase.co
NEXT_PUBLIC_SUPABASE_ANON_KEY=eyJ...

# Backend (.env)
DATABASE_URL=postgresql://...
ANTHROPIC_API_KEY=sk-ant-...
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=eyJ...

Critical Rules

  1. No emojis in code, comments, or documentation
  2. Immutability - never mutate objects or arrays
  3. TDD - write tests before implementation
  4. 80% coverage minimum
  5. Many small files - 200-400 lines typical, 800 max
  6. No console.log in production code
  7. Proper error handling with try/catch
  8. Input validation with Pydantic/Zod

Related Skills

  • coding-standards.md - General coding best practices
  • backend-patterns.md - API and database patterns
  • frontend-patterns.md - React and Next.js patterns
  • tdd-workflow/ - Test-driven development methodology
Repository
github.com/sickn33/antigravity-awesome-skills
Last updated
Created

Is this your skill?

If you maintain this skill, you can claim it as your own. Once claimed, you can manage eval scenarios, bundle related skills, attach documentation or rules, and ensure cross-agent compatibility.