tessl install tessl/pypi-h5netcdf@1.6.0netCDF4 file access via h5py with hierarchical and legacy APIs for scientific computing
Agent Success
Agent success rate when using this tile
69%
Improvement
Agent success rate improvement when using this tile compared to baseline
0.83x
Baseline
Agent success rate without this tile
83%
{
"context": "This criteria evaluates how well the engineer uses h5netcdf's invalid_netcdf mode to enable advanced HDF5 features beyond the standard netCDF4 specification, specifically boolean data types and scale-offset compression filters.",
"type": "weighted_checklist",
"checklist": [
{
"name": "File with invalid_netcdf",
"description": "Opens or creates the h5netcdf.File with invalid_netcdf=True parameter to enable non-standard netCDF4 features",
"max_score": 25
},
{
"name": "Boolean variable creation",
"description": "Creates the valid_flags variable using create_variable() with dtype=np.bool_ or dtype=bool, which requires invalid_netcdf mode",
"max_score": 20
},
{
"name": "Scale-offset filter",
"description": "Applies scale-offset compression to the temperature variable using the scaleoffset parameter in create_variable(), which requires invalid_netcdf mode",
"max_score": 20
},
{
"name": "Group creation",
"description": "Creates the 'sensors' group using create_group() method to organize data hierarchically",
"max_score": 10
},
{
"name": "Dimension management",
"description": "Creates the 'time' dimension with size 100 using the dimensions dictionary assignment (e.g., group.dimensions['time'] = 100)",
"max_score": 10
},
{
"name": "Variable creation",
"description": "Creates both temperature and valid_flags variables using create_variable() with appropriate dimensions and dtypes",
"max_score": 10
},
{
"name": "Data writing",
"description": "Writes data to variables using NumPy-style indexing (e.g., variable[:] = data)",
"max_score": 5
}
]
}