tessl install tessl/pypi-h5netcdf@1.6.0netCDF4 file access via h5py with hierarchical and legacy APIs for scientific computing
Agent Success
Agent success rate when using this tile
69%
Improvement
Agent success rate improvement when using this tile compared to baseline
0.83x
Baseline
Agent success rate without this tile
83%
{
"context": "This criteria evaluates how well the engineer uses h5netcdf's phony dimensions feature to handle HDF5 files that lack proper NetCDF4 dimension scales. The focus is on correctly using the phony_dims parameter when opening files and properly accessing dimension information from datasets.",
"type": "weighted_checklist",
"checklist": [
{
"name": "h5py file creation",
"description": "Uses h5py to create an HDF5 file with a dataset that intentionally lacks NetCDF4 dimension scales (avoids using h5netcdf or adding dimension scale metadata)",
"max_score": 20
},
{
"name": "phony_dims parameter usage",
"description": "Opens the HDF5 file using h5netcdf.File with the phony_dims parameter set to 'sort' to enable automatic dimension generation for datasets without proper dimension scales",
"max_score": 30
},
{
"name": "Variable dimension access",
"description": "Accesses the .dimensions or .dims property of a Variable object to retrieve the automatically generated phony dimension names",
"max_score": 25
},
{
"name": "Proper file handling",
"description": "Uses proper file opening and closing (e.g., context managers or explicit close() calls) for both h5py and h5netcdf File objects",
"max_score": 15
},
{
"name": "Dataset navigation",
"description": "Correctly navigates to datasets within the opened h5netcdf File using dictionary-style access (e.g., file[dataset_name] or file.variables[dataset_name])",
"max_score": 10
}
]
}