or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

tessl/pypi-keras-nightly

Multi-backend deep learning framework providing a unified API for building and training neural networks across JAX, TensorFlow, PyTorch, and OpenVINO backends

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/keras-nightly@3.11.x

To install, run

npx @tessl/cli install tessl/pypi-keras-nightly@3.11.0

0

# Keras

1

2

A multi-backend deep learning framework that provides a unified API for building and training neural networks across JAX, TensorFlow, PyTorch, and OpenVINO backends. Keras 3 is designed for accelerated model development with high-level abstractions while maintaining state-of-the-art performance through backend-specific optimizations.

3

4

## Package Information

5

6

- **Package Name**: keras-nightly

7

- **Language**: Python

8

- **Installation**: `pip install keras-nightly`

9

10

## Core Imports

11

12

```python

13

import keras

14

```

15

16

Common imports for building neural networks:

17

18

```python

19

from keras import layers, models, optimizers, losses, metrics

20

from keras.models import Sequential, Model

21

from keras.layers import Dense, Conv2D, LSTM

22

```

23

24

## Basic Usage

25

26

```python

27

import keras

28

from keras import layers

29

30

# Create a simple sequential model

31

model = keras.Sequential([

32

layers.Dense(64, activation='relu', input_shape=(784,)),

33

layers.Dropout(0.2),

34

layers.Dense(10, activation='softmax')

35

])

36

37

# Compile the model

38

model.compile(

39

optimizer='adam',

40

loss='sparse_categorical_crossentropy',

41

metrics=['accuracy']

42

)

43

44

# Train the model

45

model.fit(x_train, y_train, epochs=5, validation_split=0.2)

46

47

# Make predictions

48

predictions = model.predict(x_test)

49

```

50

51

## Architecture

52

53

Keras provides a layered architecture enabling flexible neural network construction:

54

55

- **Models**: High-level containers (Sequential, Functional API) that organize layers into computation graphs

56

- **Layers**: Fundamental building blocks that transform data (Dense, Conv2D, LSTM, etc.)

57

- **Backend Operations**: Low-level mathematical operations abstracted across multiple frameworks

58

- **Training Loop**: Compilation, fitting, and evaluation with automatic differentiation and optimization

59

- **Preprocessing**: Data pipeline components for text, image, and numerical preprocessing

60

61

This design allows every component to be customized while providing seamless model portability across different backends (JAX, TensorFlow, PyTorch, OpenVINO) without code changes.

62

63

## Capabilities

64

65

### Core Framework Classes

66

67

Essential classes for building and training neural networks, including model containers, base layer classes, and core data structures.

68

69

```python { .api }

70

class Sequential:

71

def __init__(self, layers=None, name=None): ...

72

def add(self, layer): ...

73

def compile(self, optimizer, loss=None, metrics=None, **kwargs): ...

74

def fit(self, x, y=None, **kwargs): ...

75

76

class Model:

77

def __init__(self, inputs, outputs, name=None): ...

78

def compile(self, optimizer, loss=None, metrics=None, **kwargs): ...

79

def fit(self, x, y=None, **kwargs): ...

80

81

class Layer:

82

def __init__(self, **kwargs): ...

83

def call(self, inputs, **kwargs): ...

84

def build(self, input_shape): ...

85

86

def Input(shape, batch_size=None, name=None, dtype=None, **kwargs): ...

87

```

88

89

[Core Framework](./core-framework.md)

90

91

### Neural Network Layers

92

93

Complete collection of neural network layer types including dense, convolutional, recurrent, normalization, attention, and preprocessing layers.

94

95

```python { .api }

96

class Dense:

97

def __init__(self, units, activation=None, use_bias=True, **kwargs): ...

98

99

class Conv2D:

100

def __init__(self, filters, kernel_size, strides=(1,1), padding='valid', **kwargs): ...

101

102

class LSTM:

103

def __init__(self, units, activation='tanh', return_sequences=False, **kwargs): ...

104

105

class BatchNormalization:

106

def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, **kwargs): ...

107

108

class MultiHeadAttention:

109

def __init__(self, num_heads, key_dim, **kwargs): ...

110

```

111

112

[Neural Network Layers](./layers.md)

113

114

### Loss Functions and Metrics

115

116

Comprehensive collection of loss functions for training and metrics for evaluation across classification, regression, and specialized tasks.

117

118

```python { .api }

119

class BinaryCrossentropy:

120

def __init__(self, from_logits=False, **kwargs): ...

121

122

class SparseCategoricalCrossentropy:

123

def __init__(self, from_logits=False, **kwargs): ...

124

125

class MeanSquaredError:

126

def __init__(self, **kwargs): ...

127

128

class Accuracy:

129

def __init__(self, name='accuracy', **kwargs): ...

130

131

class F1Score:

132

def __init__(self, average=None, threshold=None, **kwargs): ...

133

```

134

135

[Loss Functions and Metrics](./losses-metrics.md)

136

137

### Optimizers

138

139

Optimization algorithms for training neural networks, from basic gradient descent to advanced adaptive methods.

140

141

```python { .api }

142

class Adam:

143

def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, **kwargs): ...

144

145

class SGD:

146

def __init__(self, learning_rate=0.01, momentum=0.0, nesterov=False, **kwargs): ...

147

148

class AdamW:

149

def __init__(self, learning_rate=0.001, weight_decay=0.004, **kwargs): ...

150

151

class RMSprop:

152

def __init__(self, learning_rate=0.001, rho=0.9, **kwargs): ...

153

```

154

155

[Optimizers](./optimizers.md)

156

157

### Pre-trained Models

158

159

Extensive collection of pre-trained computer vision models with ImageNet weights for transfer learning and feature extraction.

160

161

```python { .api }

162

def ResNet50(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

163

def EfficientNetB0(include_top=True, weights='imagenet', **kwargs): ...

164

def VGG16(include_top=True, weights='imagenet', **kwargs): ...

165

def MobileNetV2(include_top=True, weights='imagenet', **kwargs): ...

166

def InceptionV3(include_top=True, weights='imagenet', **kwargs): ...

167

```

168

169

[Pre-trained Models](./applications.md)

170

171

### Mathematical Operations

172

173

Backend-agnostic mathematical operations providing NumPy-compatible APIs and neural network specific functions.

174

175

```python { .api }

176

# Core operations

177

def cast(x, dtype): ...

178

def convert_to_tensor(x, dtype=None): ...

179

def shape(x): ...

180

def dtype(x): ...

181

182

# Mathematical functions

183

def add(x1, x2): ...

184

def matmul(x1, x2): ...

185

def softmax(x, axis=-1): ...

186

def relu(x): ...

187

188

# Neural network operations

189

def conv(inputs, kernel, strides=1, padding='valid', **kwargs): ...

190

def batch_normalization(x, mean, variance, offset, scale, **kwargs): ...

191

```

192

193

[Mathematical Operations](./operations.md)

194

195

### Data Processing

196

197

Comprehensive data preprocessing utilities for images, text, audio, and numerical data with built-in augmentation capabilities.

198

199

```python { .api }

200

class TextVectorization:

201

def __init__(self, max_tokens=None, **kwargs): ...

202

203

class Normalization:

204

def __init__(self, axis=-1, **kwargs): ...

205

206

class RandomRotation:

207

def __init__(self, factor, **kwargs): ...

208

209

def image_dataset_from_directory(directory, labels='inferred', **kwargs): ...

210

def text_dataset_from_directory(directory, labels='inferred', **kwargs): ...

211

```

212

213

[Data Processing](./preprocessing.md)

214

215

### Training and Callbacks

216

217

Training utilities, callbacks for monitoring and controlling training, and model persistence functionality.

218

219

```python { .api }

220

class EarlyStopping:

221

def __init__(self, monitor='val_loss', patience=0, **kwargs): ...

222

223

class ModelCheckpoint:

224

def __init__(self, filepath, monitor='val_loss', **kwargs): ...

225

226

class ReduceLROnPlateau:

227

def __init__(self, monitor='val_loss', factor=0.1, patience=10, **kwargs): ...

228

229

def save_model(model, filepath, overwrite=True, **kwargs): ...

230

def load_model(filepath, custom_objects=None, compile=True, **kwargs): ...

231

```

232

233

[Training and Callbacks](./training-callbacks.md)

234

235

### Backend Configuration

236

237

Backend configuration utilities for managing numerical precision, data formats, and cross-backend compatibility.

238

239

```python { .api }

240

def backend(): ...

241

def set_floatx(dtype): ...

242

def set_image_data_format(data_format): ...

243

def clear_session(): ...

244

def set_random_seed(seed): ...

245

```

246

247

[Backend Configuration](./backend-config.md)

248

249

### Activation Functions

250

251

Comprehensive collection of activation functions for neural networks, from traditional ReLU and sigmoid to modern alternatives like GELU and Swish.

252

253

```python { .api }

254

def relu(x, negative_slope=0.0, max_value=None, threshold=0.0): ...

255

def sigmoid(x): ...

256

def tanh(x): ...

257

def softmax(x, axis=-1): ...

258

def gelu(x, approximate=False): ...

259

def silu(x): ...

260

def mish(x): ...

261

def elu(x, alpha=1.0): ...

262

def leaky_relu(x, negative_slope=0.3): ...

263

```

264

265

[Activation Functions](./activations.md)

266

267

### Weight Initializers

268

269

Weight initialization strategies for neural network layers, including constant, random, and variance-scaling methods.

270

271

```python { .api }

272

class Zeros: ...

273

class Ones: ...

274

class Constant:

275

def __init__(self, value=0.0): ...

276

class RandomNormal:

277

def __init__(self, mean=0.0, stddev=0.05, seed=None): ...

278

class GlorotUniform:

279

def __init__(self, seed=None): ...

280

class HeNormal:

281

def __init__(self, seed=None): ...

282

```

283

284

[Weight Initializers](./initializers.md)

285

286

### Regularizers

287

288

Regularization techniques for preventing overfitting, including L1, L2, and orthogonal regularization.

289

290

```python { .api }

291

class L1:

292

def __init__(self, l1=0.01): ...

293

class L2:

294

def __init__(self, l2=0.01): ...

295

class L1L2:

296

def __init__(self, l1=0.0, l2=0.0): ...

297

class OrthogonalRegularizer:

298

def __init__(self, factor=0.01, mode='rows'): ...

299

```

300

301

[Regularizers](./regularizers.md)

302

303

## Types

304

305

```python { .api }

306

# Core tensor type

307

class KerasTensor:

308

shape: tuple

309

dtype: str

310

311

# Variable for trainable parameters

312

class Variable:

313

def __init__(self, initializer, shape=None, dtype=None, **kwargs): ...

314

def assign(self, value): ...

315

316

# Base types for extensibility

317

class Optimizer: ...

318

class Loss: ...

319

class Metric: ...

320

class Layer: ...

321

class Initializer: ...

322

class Regularizer: ...

323

class Constraint: ...

324

class Callback: ...

325

```