or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

activations.mdapplications.mdbackend-config.mdcore-framework.mdindex.mdinitializers.mdlayers.mdlosses-metrics.mdoperations.mdoptimizers.mdpreprocessing.mdregularizers.mdtraining-callbacks.md

applications.mddocs/

0

# Pre-trained Models

1

2

Extensive collection of pre-trained computer vision models with ImageNet weights for transfer learning, feature extraction, and fine-tuning across various architectures including ResNet, EfficientNet, VGG, MobileNet, and Inception families.

3

4

## Capabilities

5

6

### ResNet Models

7

8

Residual networks with skip connections for deep architectures.

9

10

```python { .api }

11

def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None,

12

pooling=None, classes=1000, classifier_activation='softmax', **kwargs):

13

"""

14

ResNet50 architecture.

15

16

Args:

17

include_top (bool): Whether to include classification head

18

weights (str): Pre-trained weights ('imagenet' or None)

19

input_tensor: Optional input tensor

20

input_shape (tuple): Input shape for images

21

pooling (str): Pooling mode ('avg', 'max', or None)

22

classes (int): Number of classes for classification

23

classifier_activation (str): Activation for final layer

24

25

Returns:

26

Model: ResNet50 model

27

"""

28

29

def ResNet101(include_top=True, weights='imagenet', **kwargs): ...

30

def ResNet152(include_top=True, weights='imagenet', **kwargs): ...

31

def ResNet50V2(include_top=True, weights='imagenet', **kwargs): ...

32

def ResNet101V2(include_top=True, weights='imagenet', **kwargs): ...

33

def ResNet152V2(include_top=True, weights='imagenet', **kwargs): ...

34

```

35

36

### EfficientNet Models

37

38

Compound scaled convolutional networks optimized for efficiency and accuracy.

39

40

```python { .api }

41

def EfficientNetB0(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

42

def EfficientNetB1(include_top=True, weights='imagenet', **kwargs): ...

43

def EfficientNetB2(include_top=True, weights='imagenet', **kwargs): ...

44

def EfficientNetB3(include_top=True, weights='imagenet', **kwargs): ...

45

def EfficientNetB4(include_top=True, weights='imagenet', **kwargs): ...

46

def EfficientNetB5(include_top=True, weights='imagenet', **kwargs): ...

47

def EfficientNetB6(include_top=True, weights='imagenet', **kwargs): ...

48

def EfficientNetB7(include_top=True, weights='imagenet', **kwargs): ...

49

50

def EfficientNetV2B0(include_top=True, weights='imagenet', **kwargs): ...

51

def EfficientNetV2B1(include_top=True, weights='imagenet', **kwargs): ...

52

def EfficientNetV2B2(include_top=True, weights='imagenet', **kwargs): ...

53

def EfficientNetV2B3(include_top=True, weights='imagenet', **kwargs): ...

54

def EfficientNetV2S(include_top=True, weights='imagenet', **kwargs): ...

55

def EfficientNetV2M(include_top=True, weights='imagenet', **kwargs): ...

56

def EfficientNetV2L(include_top=True, weights='imagenet', **kwargs): ...

57

```

58

59

### VGG Models

60

61

Visual Geometry Group architectures with small convolution filters.

62

63

```python { .api }

64

def VGG16(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

65

def VGG19(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

66

```

67

68

### MobileNet Models

69

70

Lightweight models optimized for mobile and embedded devices.

71

72

```python { .api }

73

def MobileNet(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

74

def MobileNetV2(include_top=True, weights='imagenet', input_tensor=None, **kwargs): ...

75

def MobileNetV3Small(include_top=True, weights='imagenet', **kwargs): ...

76

def MobileNetV3Large(include_top=True, weights='imagenet', **kwargs): ...

77

```

78

79

### Other Architectures

80

81

```python { .api }

82

def InceptionV3(include_top=True, weights='imagenet', **kwargs): ...

83

def InceptionResNetV2(include_top=True, weights='imagenet', **kwargs): ...

84

def Xception(include_top=True, weights='imagenet', **kwargs): ...

85

def DenseNet121(include_top=True, weights='imagenet', **kwargs): ...

86

def DenseNet169(include_top=True, weights='imagenet', **kwargs): ...

87

def DenseNet201(include_top=True, weights='imagenet', **kwargs): ...

88

def NASNetMobile(include_top=True, weights='imagenet', **kwargs): ...

89

def NASNetLarge(include_top=True, weights='imagenet', **kwargs): ...

90

```

91

92

## Usage Examples

93

94

### Transfer Learning

95

96

```python

97

import keras

98

from keras.applications import ResNet50

99

from keras import layers

100

101

# Load pre-trained model without top classification layer

102

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

103

104

# Freeze base model weights

105

base_model.trainable = False

106

107

# Add custom classification head

108

model = keras.Sequential([

109

base_model,

110

layers.GlobalAveragePooling2D(),

111

layers.Dense(128, activation='relu'),

112

layers.Dropout(0.2),

113

layers.Dense(num_classes, activation='softmax')

114

])

115

116

model.compile(

117

optimizer='adam',

118

loss='sparse_categorical_crossentropy',

119

metrics=['accuracy']

120

)

121

```

122

123

### Feature Extraction

124

125

```python

126

from keras.applications import EfficientNetB0

127

from keras.applications.efficientnet import preprocess_input

128

129

# Load model for feature extraction

130

model = EfficientNetB0(weights='imagenet', include_top=False, pooling='avg')

131

132

# Preprocess images

133

x = preprocess_input(images)

134

135

# Extract features

136

features = model.predict(x)

137

```