or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

activations.mdapplications.mdbackend-config.mdcore-framework.mdindex.mdinitializers.mdlayers.mdlosses-metrics.mdoperations.mdoptimizers.mdpreprocessing.mdregularizers.mdtraining-callbacks.md

operations.mddocs/

0

# Mathematical Operations

1

2

Backend-agnostic mathematical operations providing NumPy-compatible APIs, neural network specific functions, and core tensor operations that work across JAX, TensorFlow, PyTorch, and OpenVINO backends.

3

4

## Capabilities

5

6

### Core Operations

7

8

Essential tensor operations and control flow functions.

9

10

```python { .api }

11

def cast(x, dtype):

12

"""Cast tensor to specified data type."""

13

14

def convert_to_tensor(x, dtype=None, sparse=None):

15

"""Convert input to backend tensor."""

16

17

def convert_to_numpy(x):

18

"""Convert tensor to NumPy array."""

19

20

def shape(x):

21

"""Get tensor shape as tuple."""

22

23

def dtype(x):

24

"""Get tensor data type."""

25

26

def stop_gradient(x):

27

"""Stop gradient computation through tensor."""

28

29

def cond(pred, true_fn, false_fn):

30

"""Conditional execution based on predicate."""

31

32

def scan(fn, init, xs, length=None, reverse=False, unroll=1):

33

"""Apply function across sequence elements."""

34

35

def map(fn, xs):

36

"""Map function over tensor elements."""

37

```

38

39

### NumPy-Compatible Operations

40

41

Mathematical functions matching NumPy API for cross-backend compatibility.

42

43

```python { .api }

44

# Array creation

45

def zeros(shape, dtype='float32'): ...

46

def ones(shape, dtype='float32'): ...

47

def eye(N, M=None, k=0, dtype='float32'): ...

48

def arange(start, stop=None, step=1, dtype=None): ...

49

50

# Mathematical operations

51

def add(x1, x2): ...

52

def subtract(x1, x2): ...

53

def multiply(x1, x2): ...

54

def divide(x1, x2): ...

55

def power(x1, x2): ...

56

def sqrt(x): ...

57

def exp(x): ...

58

def log(x): ...

59

def sin(x): ...

60

def cos(x): ...

61

def tanh(x): ...

62

63

# Reduction operations

64

def sum(x, axis=None, keepdims=False): ...

65

def mean(x, axis=None, keepdims=False): ...

66

def max(x, axis=None, keepdims=False): ...

67

def min(x, axis=None, keepdims=False): ...

68

69

# Linear algebra

70

def matmul(x1, x2): ...

71

def dot(x1, x2): ...

72

def transpose(x, axes=None): ...

73

def reshape(x, shape): ...

74

75

# Indexing and manipulation

76

def concatenate(arrays, axis=0): ...

77

def stack(arrays, axis=0): ...

78

def split(x, indices_or_sections, axis=0): ...

79

def squeeze(x, axis=None): ...

80

def expand_dims(x, axis): ...

81

```

82

83

### Neural Network Operations

84

85

Specialized operations for neural networks and deep learning.

86

87

```python { .api }

88

# Activation functions

89

def relu(x): ...

90

def sigmoid(x): ...

91

def softmax(x, axis=-1): ...

92

def gelu(x, approximate=False): ...

93

def silu(x): ... # Also available as swish

94

95

# Convolution operations

96

def conv(inputs, kernel, strides=1, padding='valid', data_format=None,

97

dilation_rate=1, groups=1): ...

98

def conv_transpose(inputs, kernel, strides=1, padding='valid'): ...

99

def depthwise_conv(inputs, kernel, strides=1, padding='valid'): ...

100

101

# Pooling operations

102

def max_pool(inputs, pool_size, strides=None, padding='valid'): ...

103

def average_pool(inputs, pool_size, strides=None, padding='valid'): ...

104

105

# Normalization

106

def batch_normalization(x, mean, variance, offset, scale, epsilon=1e-3): ...

107

def layer_normalization(x, axis=-1, epsilon=1e-3): ...

108

109

# Loss functions

110

def binary_crossentropy(target, output, from_logits=False): ...

111

def categorical_crossentropy(target, output, from_logits=False, axis=-1): ...

112

def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1): ...

113

114

# Utility functions

115

def one_hot(x, num_classes, axis=-1, dtype='float32'): ...

116

def top_k(x, k, sorted=True): ...

117

def in_top_k(targets, predictions, k): ...

118

```

119

120

### Linear Algebra Operations

121

122

Advanced linear algebra operations for machine learning algorithms.

123

124

```python { .api }

125

def cholesky(x): ...

126

def det(x): ...

127

def eig(x): ...

128

def eigh(x): ...

129

def inv(x): ...

130

def lstsq(a, b, rcond=None): ...

131

def norm(x, ord=None, axis=None, keepdims=False): ...

132

def qr(x, mode='reduced'): ...

133

def solve(a, b): ...

134

def svd(x, full_matrices=True): ...

135

```

136

137

### FFT Operations

138

139

Fast Fourier Transform operations for signal processing.

140

141

```python { .api }

142

def fft(x): ...

143

def fft2(x): ...

144

def rfft(x): ...

145

def irfft(x): ...

146

def stft(x, frame_length, frame_step, fft_length=None): ...

147

def istft(stfts, frame_length, frame_step, fft_length=None): ...

148

```

149

150

## Usage Examples

151

152

### Basic Tensor Operations

153

154

```python

155

import keras

156

from keras import ops

157

158

# Create tensors

159

x = ops.ones((3, 4))

160

y = ops.zeros((3, 4))

161

162

# Mathematical operations

163

z = ops.add(x, y)

164

w = ops.matmul(x, ops.transpose(y))

165

166

# Reductions

167

mean_val = ops.mean(x)

168

sum_val = ops.sum(x, axis=1)

169

```

170

171

### Neural Network Forward Pass

172

173

```python

174

import keras

175

from keras import ops

176

177

def forward_pass(x, weights, bias):

178

# Linear transformation

179

x = ops.matmul(x, weights) + bias

180

181

# Activation

182

x = ops.relu(x)

183

184

# Normalization

185

mean = ops.mean(x, axis=0, keepdims=True)

186

variance = ops.var(x, axis=0, keepdims=True)

187

x = (x - mean) / ops.sqrt(variance + 1e-7)

188

189

return x

190

```