tessl install tessl/pypi-rdkit@2024.9.0Platform wheels for RDKit - a comprehensive cheminformatics and machine-learning library with Python bindings
Agent Success
Agent success rate when using this tile
89%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.01x
Baseline
Agent success rate without this tile
88%
{
"context": "This evaluation assesses how effectively the engineer uses RDKit's molecular fingerprinting and similarity calculation capabilities to solve the molecular comparison problem. The focus is exclusively on proper use of RDKit APIs for SMILES parsing, fingerprint generation, and Tanimoto similarity computation.",
"type": "weighted_checklist",
"checklist": [
{
"name": "SMILES Parsing",
"description": "Uses Chem.MolFromSmiles() to convert SMILES strings into molecule objects for both input functions",
"max_score": 20
},
{
"name": "Fingerprint Generation",
"description": "Generates molecular fingerprints using an appropriate RDKit fingerprinting function (e.g., GetMorganFingerprintAsBitVect, RDKFingerprint, or GetMACCSKeysFingerprint) for similarity comparison",
"max_score": 25
},
{
"name": "Tanimoto Calculation",
"description": "Uses DataStructs.TanimotoSimilarity() (or DataStructs.FingerprintSimilarity with Tanimoto metric) to compute similarity scores between fingerprints",
"max_score": 30
},
{
"name": "Invalid Input Handling",
"description": "Properly checks if MolFromSmiles() returns None (indicating invalid SMILES) and raises appropriate errors",
"max_score": 15
},
{
"name": "Batch Processing",
"description": "Efficiently processes multiple candidate molecules in find_similar_molecules() by generating fingerprints and computing similarities for each candidate",
"max_score": 10
}
]
}