tessl install tessl/pypi-rdkit@2024.9.0Platform wheels for RDKit - a comprehensive cheminformatics and machine-learning library with Python bindings
Agent Success
Agent success rate when using this tile
89%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.01x
Baseline
Agent success rate without this tile
88%
{
"context": "This evaluation assesses how effectively the engineer uses RDKit's Morgan/Circular fingerprint functionality to solve a molecular similarity search problem. The focus is specifically on proper usage of fingerprint generation and similarity calculation APIs.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Morgan fingerprint generation",
"description": "Uses GetMorganFingerprintAsBitVect() or GetMorganFingerprint() to generate circular fingerprints for molecules. This is the core Morgan/circular fingerprint functionality.",
"max_score": 35
},
{
"name": "SMILES parsing",
"description": "Uses MolFromSmiles() to parse SMILES strings into Mol objects before processing. This is required for all RDKit operations.",
"max_score": 20
},
{
"name": "Radius parameter",
"description": "Correctly uses the radius parameter in GetMorganFingerprintAsBitVect() to control the fingerprint's circular neighborhood size (ECFP equivalent)",
"max_score": 15
},
{
"name": "Fingerprint bit length",
"description": "Correctly uses the nBits parameter in GetMorganFingerprintAsBitVect() to set the fingerprint bit vector length",
"max_score": 10
},
{
"name": "Similarity calculation",
"description": "Uses TanimotoSimilarity(), DiceSimilarity(), or another DataStructs similarity function to compare fingerprints, properly passing two fingerprint objects",
"max_score": 20
}
]
}