tessl install tessl/pypi-spreg@1.8.0Spatial econometric regression models for analyzing geographically-related data interactions.
Agent Success
Agent success rate when using this tile
87%
Improvement
Agent success rate improvement when using this tile compared to baseline
0.95x
Baseline
Agent success rate without this tile
92%
{
"context": "This criteria evaluates the engineer's ability to use spreg's SUR models with equation-specific spatial error parameters. The focus is on proper use of SURerrorGM or SURerrorML classes with appropriate configuration for allowing spatial parameters to differ across equations.",
"type": "weighted_checklist",
"checklist": [
{
"name": "SUR model class usage",
"description": "Uses appropriate SUR spatial error class (SURerrorGM or SURerrorML) from spreg to estimate the system of equations",
"max_score": 25
},
{
"name": "Dictionary data structure",
"description": "Correctly structures input data as dictionaries with bigy and bigX parameters, where keys represent equation identifiers and values contain the corresponding dependent and independent variables for each equation",
"max_score": 20
},
{
"name": "Equation-specific spatial parameters",
"description": "Configures the SUR model to estimate equation-specific spatial error parameters (lambda values that differ across equations), using the appropriate model initialization or parameter settings that enable this capability",
"max_score": 30
},
{
"name": "Spatial parameter extraction",
"description": "Correctly extracts and returns the spatial error parameter (lambda) for each equation from the fitted model object, accessing equation-specific attributes or multi-equation results",
"max_score": 15
},
{
"name": "Coefficient and standard error extraction",
"description": "Correctly extracts coefficient estimates and standard errors for each equation from the fitted SUR model object using appropriate attributes (e.g., betas, std_err, or equation-specific accessors)",
"max_score": 10
}
]
}