tessl install tessl/pypi-cupy-cuda101@9.6.0CuPy: NumPy & SciPy for GPU (CUDA 10.1 version)
Agent Success
Agent success rate when using this tile
87%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.19x
Baseline
Agent success rate without this tile
73%
A GPU-accelerated computation tool that performs complex element-wise mathematical operations on numeric arrays.
Accepts two numeric arrays of the same shape and computes a combined transformation: for each element pair (a, b), calculate (a² + b²)^0.5 * sin(a) + cos(b). Return the result as an array of the same shape.
[1.0, 2.0, 3.0] and [4.0, 5.0, 6.0], returns an array where each element is computed using the formula above @test(3, 3) with values [[1, 2, 3], [4, 5, 6], [7, 8, 9]] and [[9, 8, 7], [6, 5, 4], [3, 2, 1]], returns a 2D array with element-wise transformations applied @testWhen operating on arrays of different numeric types, the function automatically promotes types to preserve precision without requiring explicit type conversion.
[1, 2, 3] (dtype: int32) and a float array [1.5, 2.5, 3.5] (dtype: float32), returns a result with appropriate floating-point precision @testEnsure both input arrays have the same shape before processing.
[1, 2, 3] and [4, 5], raises a ValueError indicating shape mismatch @test@generates
def compute_transformation(array_a, array_b):
"""
Compute element-wise transformation on two arrays.
Formula: (a² + b²)^0.5 * sin(a) + cos(b)
Args:
array_a: First numeric array (any numeric dtype)
array_b: Second numeric array (any numeric dtype, same shape as array_a)
Returns:
Array with same shape as inputs containing transformed values
Raises:
ValueError: If input arrays have different shapes
"""
passProvides GPU-accelerated array operations with NumPy-compatible API.
@satisfied-by