tessl install tessl/pypi-cupy-cuda101@9.6.0CuPy: NumPy & SciPy for GPU (CUDA 10.1 version)
Agent Success
Agent success rate when using this tile
87%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.19x
Baseline
Agent success rate without this tile
73%
{
"context": "This evaluation assesses the engineer's ability to use CuPy's array splitting functions (split, array_split, hsplit, vsplit, dsplit) to implement a batch data processing module. The focus is on selecting and applying the appropriate splitting functions for different dimensional scenarios.",
"type": "weighted_checklist",
"checklist": [
{
"name": "array_split usage",
"description": "Uses cupy.array_split() or cp.array_split() in split_into_chunks() function to handle unequal chunk sizes when array cannot be evenly divided",
"max_score": 30
},
{
"name": "hsplit usage",
"description": "Uses cupy.hsplit() or cp.hsplit() in split_columns() function to split 2D arrays horizontally (column-wise)",
"max_score": 20
},
{
"name": "vsplit usage",
"description": "Uses cupy.vsplit() or cp.vsplit() in split_rows() function to split 2D arrays vertically (row-wise)",
"max_score": 20
},
{
"name": "dsplit usage",
"description": "Uses cupy.dsplit() or cp.dsplit() in split_depth() function to split 3D arrays along the third dimension (depth-wise)",
"max_score": 20
},
{
"name": "Correct function parameters",
"description": "Passes correct parameters to splitting functions: array as first argument and indices_or_sections (num_chunks) as second argument",
"max_score": 10
}
]
}