tessl install tessl/pypi-cupy-cuda101@9.6.0CuPy: NumPy & SciPy for GPU (CUDA 10.1 version)
Agent Success
Agent success rate when using this tile
87%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.19x
Baseline
Agent success rate without this tile
73%
Build a Python module that performs custom vector operations using GPU acceleration. The module should implement element-wise computations that leverage GPU parallelism for performance-critical mathematical operations.
@generates
def squared_sum(x, y):
"""
Computes element-wise x² + y².
Args:
x: First input array
y: Second input array (must have same shape as x)
Returns:
Array containing x² + y² for each element
Raises:
ValueError: If x and y have different shapes
"""
pass
def scaled_product(x, y, alpha):
"""
Computes element-wise alpha * (x * y).
Args:
x: First input array
y: Second input array (must have same shape as x)
alpha: Scalar multiplier
Returns:
Array containing alpha * (x * y) for each element
Raises:
ValueError: If x and y have different shapes
"""
pass
def sigmoid_activation(x):
"""
Computes sigmoid activation: 1 / (1 + exp(-x)).
Args:
x: Input array
Returns:
Array containing sigmoid values for each element
"""
pass
def euclidean_norm(x, y):
"""
Computes element-wise Euclidean norm: sqrt(x² + y²).
Args:
x: First input array
y: Second input array (must have same shape as x)
Returns:
Array containing Euclidean norm for each element pair
Raises:
ValueError: If x and y have different shapes
"""
passProvides GPU-accelerated computing with Python.
@satisfied-by