tessl install tessl/pypi-deeplake@4.3.0Database for AI powered by a storage format optimized for deep-learning applications.
Agent Success
Agent success rate when using this tile
75%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.6x
Baseline
Agent success rate without this tile
47%
{
"context": "This criteria evaluates how well the engineer uses Deep Lake's utility functions for generating random test data and managing cache. The focus is on proper usage of deeplake.random() for data generation and deeplake._create_global_cache() or related cache management functions.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Dataset creation",
"description": "Uses deeplake.create() or deeplake.empty() to create a new dataset at the specified path",
"max_score": 15
},
{
"name": "Random data generation",
"description": "Uses deeplake.random() or equivalent random data generation utilities from the deeplake package to populate the dataset with random samples",
"max_score": 35
},
{
"name": "Schema configuration",
"description": "Properly adds columns to the dataset based on the schema dictionary using dataset.add_column() with appropriate type specifications",
"max_score": 20
},
{
"name": "Type handling",
"description": "Correctly handles different column types (text, int, float, embedding) using appropriate deeplake types (e.g., types.Text(), types.Int32(), types.Float32(), types.Embedding())",
"max_score": 20
},
{
"name": "Cache management",
"description": "Uses deeplake._create_global_cache() or other cache-related utilities from deeplake to implement the clear_test_cache() function",
"max_score": 10
}
]
}