or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/deeplake@4.3.x
tile.json

tessl/pypi-deeplake

tessl install tessl/pypi-deeplake@4.3.0

Database for AI powered by a storage format optimized for deep-learning applications.

Agent Success

Agent success rate when using this tile

75%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.6x

Baseline

Agent success rate without this tile

47%

rubric.jsonevals/scenario-9/

{
  "context": "This evaluation assesses the engineer's ability to use Deep Lake's schema and column management API. The criteria focus on correct usage of dataset creation, column addition, column renaming, and column removal functions from the deeplake package.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Dataset Creation",
      "description": "Uses deeplake.create() to initialize a new dataset with the correct path. Properly defines initial columns (id, name, description) with appropriate types using the types module (types.Text()).",
      "max_score": 25
    },
    {
      "name": "Add Column",
      "description": "Uses dataset.add_column() method to add the 'price' column. Correctly specifies the column name and type (types.Float32()).",
      "max_score": 25
    },
    {
      "name": "Rename Column",
      "description": "Uses dataset.rename_column() method to rename 'description' to 'product_details'. Provides both the old column name and new column name as arguments.",
      "max_score": 25
    },
    {
      "name": "Remove Column",
      "description": "Uses dataset.remove_column() method to delete the 'name' column. Correctly specifies the column name to be removed.",
      "max_score": 25
    }
  ]
}