or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/deeplake@4.3.x
tile.json

tessl/pypi-deeplake

tessl install tessl/pypi-deeplake@4.3.0

Database for AI powered by a storage format optimized for deep-learning applications.

Agent Success

Agent success rate when using this tile

75%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.6x

Baseline

Agent success rate without this tile

47%

rubric.jsonevals/scenario-10/

{
  "context": "This criteria evaluates how well the engineer uses Deep Lake's advanced version control features to manage dataset branches, commits, tags, and merges for experimental ML workflows.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Dataset creation",
      "description": "Uses deeplake.create() or deeplake.open() to initialize a dataset with proper column definitions using appropriate types (e.g., types.Embedding() for embeddings, types.Text() for labels)",
      "max_score": 15
    },
    {
      "name": "Branch creation",
      "description": "Uses dataset.branch() method to create new branches and properly manages branch references",
      "max_score": 20
    },
    {
      "name": "Commit operations",
      "description": "Uses dataset.commit() method with descriptive messages to save changes on different branches",
      "max_score": 20
    },
    {
      "name": "Tag creation",
      "description": "Uses dataset.tag() method to create named tags for important dataset versions",
      "max_score": 15
    },
    {
      "name": "Merge operations",
      "description": "Uses dataset.merge() method to combine changes from a source branch into a target branch",
      "max_score": 20
    },
    {
      "name": "Branch/tag listing",
      "description": "Uses dataset.branches and dataset.tags properties to retrieve and display all branches and tags",
      "max_score": 10
    }
  ]
}