or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

bijectors.mdcontinuous-distributions.mddiscrete-distributions.mdindex.mdmixture-composite.mdspecialized-distributions.mdutilities.md

continuous-distributions.mddocs/

0

# Continuous Distributions

1

2

Continuous probability distributions for modeling real-valued random variables, including univariate and multivariate distributions with various parameterizations and covariance structures.

3

4

## Capabilities

5

6

### Univariate Normal Distribution

7

8

Standard normal distribution with location and scale parameters.

9

10

```python { .api }

11

class Normal(Distribution):

12

def __init__(self, loc, scale):

13

"""

14

Normal distribution.

15

16

Parameters:

17

- loc: mean parameter (float or array)

18

- scale: standard deviation parameter (float or array, must be positive)

19

"""

20

21

@property

22

def loc(self): ...

23

@property

24

def scale(self): ...

25

@property

26

def event_shape(self): ...

27

@property

28

def batch_shape(self): ...

29

```

30

31

### Alternative Normal Parameterizations

32

33

Normal distribution parameterized by log standard deviation for numerical stability.

34

35

```python { .api }

36

class LogStddevNormal(Distribution):

37

def __init__(self, loc, log_scale):

38

"""

39

Normal distribution parameterized by log standard deviation.

40

41

Parameters:

42

- loc: mean parameter (float or array)

43

- log_scale: log standard deviation parameter (float or array)

44

"""

45

46

@property

47

def loc(self): ...

48

@property

49

def log_scale(self): ...

50

@property

51

def scale(self): ...

52

```

53

54

### Beta Distribution

55

56

Beta distribution for modeling probabilities and proportions.

57

58

```python { .api }

59

class Beta(Distribution):

60

def __init__(self, concentration1, concentration0):

61

"""

62

Beta distribution.

63

64

Parameters:

65

- concentration1: first concentration parameter (must be positive)

66

- concentration0: second concentration parameter (must be positive)

67

"""

68

69

@property

70

def concentration1(self): ...

71

@property

72

def concentration0(self): ...

73

```

74

75

### Gamma Distribution

76

77

Gamma distribution for modeling positive continuous variables.

78

79

```python { .api }

80

class Gamma(Distribution):

81

def __init__(self, concentration, rate):

82

"""

83

Gamma distribution.

84

85

Parameters:

86

- concentration: shape parameter (must be positive)

87

- rate: rate parameter (must be positive)

88

"""

89

90

@property

91

def concentration(self): ...

92

@property

93

def rate(self): ...

94

```

95

96

### Laplace Distribution

97

98

Laplace (double exponential) distribution.

99

100

```python { .api }

101

class Laplace(Distribution):

102

def __init__(self, loc, scale):

103

"""

104

Laplace distribution.

105

106

Parameters:

107

- loc: location parameter (float or array)

108

- scale: scale parameter (float or array, must be positive)

109

"""

110

111

@property

112

def loc(self): ...

113

@property

114

def scale(self): ...

115

```

116

117

### Logistic Distribution

118

119

Logistic distribution for sigmoid-shaped densities.

120

121

```python { .api }

122

class Logistic(Distribution):

123

def __init__(self, loc, scale):

124

"""

125

Logistic distribution.

126

127

Parameters:

128

- loc: location parameter (float or array)

129

- scale: scale parameter (float or array, must be positive)

130

"""

131

132

@property

133

def loc(self): ...

134

@property

135

def scale(self): ...

136

```

137

138

### Gumbel Distribution

139

140

Gumbel distribution for modeling extreme values.

141

142

```python { .api }

143

class Gumbel(Distribution):

144

def __init__(self, loc, scale):

145

"""

146

Gumbel distribution.

147

148

Parameters:

149

- loc: location parameter (float or array)

150

- scale: scale parameter (float or array, must be positive)

151

"""

152

153

@property

154

def loc(self): ...

155

@property

156

def scale(self): ...

157

```

158

159

### Uniform Distribution

160

161

Uniform distribution over a specified interval.

162

163

```python { .api }

164

class Uniform(Distribution):

165

def __init__(self, low, high):

166

"""

167

Uniform distribution.

168

169

Parameters:

170

- low: lower bound (float or array)

171

- high: upper bound (float or array, must be > low)

172

"""

173

174

@property

175

def low(self): ...

176

@property

177

def high(self): ...

178

```

179

180

### Von Mises Distribution

181

182

Von Mises (circular normal) distribution for circular data.

183

184

```python { .api }

185

class VonMises(Distribution):

186

def __init__(self, loc, concentration):

187

"""

188

Von Mises distribution.

189

190

Parameters:

191

- loc: mean direction parameter (float or array)

192

- concentration: concentration parameter (float or array, must be >= 0)

193

"""

194

195

@property

196

def loc(self): ...

197

@property

198

def concentration(self): ...

199

```

200

201

### Multivariate Normal with Diagonal Covariance

202

203

Multivariate normal distribution with diagonal covariance matrix.

204

205

```python { .api }

206

class MultivariateNormalDiag(Distribution):

207

def __init__(self, loc, scale_diag):

208

"""

209

Multivariate normal with diagonal covariance.

210

211

Parameters:

212

- loc: mean vector (array of shape [..., d])

213

- scale_diag: diagonal standard deviations (array of shape [..., d], must be positive)

214

"""

215

216

@property

217

def loc(self): ...

218

@property

219

def scale_diag(self): ...

220

@property

221

def event_shape(self): ...

222

```

223

224

### Multivariate Normal with Full Covariance

225

226

Multivariate normal distribution with full covariance matrix.

227

228

```python { .api }

229

class MultivariateNormalFullCovariance(Distribution):

230

def __init__(self, loc, covariance_matrix):

231

"""

232

Multivariate normal with full covariance matrix.

233

234

Parameters:

235

- loc: mean vector (array of shape [..., d])

236

- covariance_matrix: covariance matrix (array of shape [..., d, d], must be positive definite)

237

"""

238

239

@property

240

def loc(self): ...

241

@property

242

def covariance_matrix(self): ...

243

```

244

245

### Multivariate Normal with Triangular Parameterization

246

247

Multivariate normal distribution parameterized by triangular matrices.

248

249

```python { .api }

250

class MultivariateNormalTri(Distribution):

251

def __init__(self, loc, scale_tri, scale_diag):

252

"""

253

Multivariate normal with triangular parameterization.

254

255

Parameters:

256

- loc: mean vector (array of shape [..., d])

257

- scale_tri: lower triangular matrix (array of shape [..., d, d])

258

- scale_diag: diagonal scale factors (array of shape [..., d])

259

"""

260

261

@property

262

def loc(self): ...

263

@property

264

def scale_tri(self): ...

265

@property

266

def scale_diag(self): ...

267

```

268

269

### Multivariate Normal with Low-Rank Plus Diagonal

270

271

Multivariate normal with diagonal plus low-rank covariance structure.

272

273

```python { .api }

274

class MultivariateNormalDiagPlusLowRank(Distribution):

275

def __init__(self, loc, scale_diag, scale_identity_multiplier, scale_perturb_factor):

276

"""

277

Multivariate normal with diagonal plus low-rank covariance.

278

279

Parameters:

280

- loc: mean vector (array of shape [..., d])

281

- scale_diag: diagonal component (array of shape [..., d])

282

- scale_identity_multiplier: scalar multiplier for identity (float or array)

283

- scale_perturb_factor: low-rank perturbation factor (array of shape [..., d, k])

284

"""

285

286

@property

287

def loc(self): ...

288

@property

289

def scale_diag(self): ...

290

@property

291

def scale_identity_multiplier(self): ...

292

@property

293

def scale_perturb_factor(self): ...

294

```

295

296

### Multivariate Normal from Bijector

297

298

Multivariate normal distribution constructed using a bijector transformation.

299

300

```python { .api }

301

class MultivariateNormalFromBijector(Distribution):

302

def __init__(self, shift, bijector):

303

"""

304

Multivariate normal constructed via bijector.

305

306

Parameters:

307

- shift: location parameter (array of shape [..., d])

308

- bijector: bijector defining the transformation from standard normal

309

"""

310

311

@property

312

def shift(self): ...

313

@property

314

def bijector(self): ...

315

```

316

317

### Dirichlet Distribution

318

319

Dirichlet distribution for modeling probability vectors.

320

321

```python { .api }

322

class Dirichlet(Distribution):

323

def __init__(self, concentration):

324

"""

325

Dirichlet distribution.

326

327

Parameters:

328

- concentration: concentration parameters (array of shape [..., k], must be positive)

329

"""

330

331

@property

332

def concentration(self): ...

333

@property

334

def event_shape(self): ...

335

```