or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

bijectors.mdcontinuous-distributions.mddiscrete-distributions.mdindex.mdmixture-composite.mdspecialized-distributions.mdutilities.md

specialized-distributions.mddocs/

0

# Specialized Distributions

1

2

Task-specific distributions for reinforcement learning, clipped distributions, and deterministic distributions for specialized modeling needs.

3

4

## Capabilities

5

6

### Reinforcement Learning Distributions

7

8

#### Epsilon-Greedy Distribution

9

10

Epsilon-greedy distribution for exploration in reinforcement learning.

11

12

```python { .api }

13

class EpsilonGreedy(Distribution):

14

def __init__(self, preferences, epsilon):

15

"""

16

Epsilon-greedy distribution.

17

18

Parameters:

19

- preferences: preference scores for actions (array)

20

- epsilon: exploration probability (float in [0, 1])

21

"""

22

23

@property

24

def preferences(self): ...

25

@property

26

def epsilon(self): ...

27

@property

28

def most_likely_action(self): ...

29

```

30

31

#### Greedy Distribution

32

33

Greedy distribution that always selects the highest-scoring action.

34

35

```python { .api }

36

class Greedy(Distribution):

37

def __init__(self, preferences, dtype=int):

38

"""

39

Greedy distribution.

40

41

Parameters:

42

- preferences: preference scores for actions (array)

43

- dtype: output data type (int or float)

44

"""

45

46

@property

47

def preferences(self): ...

48

@property

49

def most_likely_action(self): ...

50

```

51

52

### Clipped Distributions

53

54

#### Base Clipped Distribution

55

56

Base class for distributions with clipped support.

57

58

```python { .api }

59

class Clipped(Distribution):

60

def __init__(self, distribution, low, high):

61

"""

62

Base clipped distribution.

63

64

Parameters:

65

- distribution: base distribution to clip

66

- low: lower clipping bound (float or array)

67

- high: upper clipping bound (float or array)

68

"""

69

70

@property

71

def distribution(self): ...

72

@property

73

def low(self): ...

74

@property

75

def high(self): ...

76

```

77

78

#### Clipped Normal Distribution

79

80

Normal distribution with clipped support.

81

82

```python { .api }

83

class ClippedNormal(Distribution):

84

def __init__(self, loc, scale, low, high):

85

"""

86

Clipped normal distribution.

87

88

Parameters:

89

- loc: mean parameter (float or array)

90

- scale: standard deviation parameter (float or array, must be positive)

91

- low: lower clipping bound (float or array)

92

- high: upper clipping bound (float or array)

93

"""

94

95

@property

96

def loc(self): ...

97

@property

98

def scale(self): ...

99

@property

100

def low(self): ...

101

@property

102

def high(self): ...

103

```

104

105

#### Clipped Logistic Distribution

106

107

Logistic distribution with clipped support.

108

109

```python { .api }

110

class ClippedLogistic(Distribution):

111

def __init__(self, loc, scale, low, high):

112

"""

113

Clipped logistic distribution.

114

115

Parameters:

116

- loc: location parameter (float or array)

117

- scale: scale parameter (float or array, must be positive)

118

- low: lower clipping bound (float or array)

119

- high: upper clipping bound (float or array)

120

"""

121

122

@property

123

def loc(self): ...

124

@property

125

def scale(self): ...

126

@property

127

def low(self): ...

128

@property

129

def high(self): ...

130

```

131

132

### Deterministic Distribution

133

134

Distribution that always returns the same value.

135

136

```python { .api }

137

class Deterministic(Distribution):

138

def __init__(self, loc):

139

"""

140

Deterministic distribution (Dirac delta).

141

142

Parameters:

143

- loc: deterministic value (float or array)

144

"""

145

146

@property

147

def loc(self): ...

148

@property

149

def event_shape(self): ...

150

```

151

152

### Straight-Through Wrapper

153

154

Wrapper that uses straight-through gradients for samples.

155

156

```python { .api }

157

def straight_through_wrapper(distribution_cls):

158

"""

159

Wraps a distribution to use straight-through gradients for samples.

160

161

Parameters:

162

- distribution_cls: distribution class to wrap

163

164

Returns:

165

Wrapped distribution class with straight-through gradients

166

"""

167

```