or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

Files

docs

bijectors.mdcontinuous-distributions.mddiscrete-distributions.mdindex.mdmixture-composite.mdspecialized-distributions.mdutilities.md

discrete-distributions.mddocs/

0

# Discrete Distributions

1

2

Discrete probability distributions for modeling categorical and binary outcomes, including various parameterizations for different use cases.

3

4

## Capabilities

5

6

### Bernoulli Distribution

7

8

Binary distribution for modeling binary outcomes.

9

10

```python { .api }

11

class Bernoulli(Distribution):

12

def __init__(self, logits=None, probs=None, dtype=int):

13

"""

14

Bernoulli distribution for binary outcomes.

15

16

Parameters:

17

- logits: log-odds parameter (float or array, mutually exclusive with probs)

18

- probs: probability parameter (float or array in [0,1], mutually exclusive with logits)

19

- dtype: output data type (int or float)

20

21

Note: Exactly one of logits or probs must be specified.

22

"""

23

24

@property

25

def logits(self): ...

26

@property

27

def probs(self): ...

28

@property

29

def dtype(self): ...

30

@property

31

def event_shape(self): ...

32

```

33

34

### Categorical Distribution

35

36

Categorical distribution for discrete outcomes with multiple categories.

37

38

```python { .api }

39

class Categorical(Distribution):

40

def __init__(self, logits=None, probs=None, dtype=int):

41

"""

42

Categorical distribution for discrete outcomes.

43

44

Parameters:

45

- logits: log-probabilities (array of shape [..., k], mutually exclusive with probs)

46

- probs: probabilities (array of shape [..., k] that sums to 1, mutually exclusive with logits)

47

- dtype: output data type (int or float)

48

49

Note: Exactly one of logits or probs must be specified.

50

"""

51

52

@property

53

def logits(self): ...

54

@property

55

def probs(self): ...

56

@property

57

def dtype(self): ...

58

@property

59

def num_categories(self): ...

60

@property

61

def event_shape(self): ...

62

```

63

64

### One-Hot Categorical Distribution

65

66

Categorical distribution with one-hot encoded outcomes.

67

68

```python { .api }

69

class OneHotCategorical(Distribution):

70

def __init__(self, logits=None, probs=None, dtype=float):

71

"""

72

One-hot categorical distribution.

73

74

Parameters:

75

- logits: log-probabilities (array of shape [..., k], mutually exclusive with probs)

76

- probs: probabilities (array of shape [..., k] that sums to 1, mutually exclusive with logits)

77

- dtype: output data type (float or int)

78

79

Note: Exactly one of logits or probs must be specified.

80

"""

81

82

@property

83

def logits(self): ...

84

@property

85

def probs(self): ...

86

@property

87

def dtype(self): ...

88

@property

89

def num_categories(self): ...

90

@property

91

def event_shape(self): ...

92

```

93

94

### Categorical Uniform Distribution

95

96

Uniform categorical distribution over all categories.

97

98

```python { .api }

99

class CategoricalUniform(Distribution):

100

def __init__(self, num_categories, dtype=int):

101

"""

102

Uniform categorical distribution.

103

104

Parameters:

105

- num_categories: number of categories (positive integer)

106

- dtype: output data type (int or float)

107

"""

108

109

@property

110

def num_categories(self): ...

111

@property

112

def dtype(self): ...

113

@property

114

def logits(self): ...

115

@property

116

def probs(self): ...

117

```

118

119

### Multinomial Distribution

120

121

Multinomial distribution for modeling counts across multiple categories.

122

123

```python { .api }

124

class Multinomial(Distribution):

125

def __init__(self, total_count, logits=None, probs=None, dtype=int):

126

"""

127

Multinomial distribution.

128

129

Parameters:

130

- total_count: total number of trials (positive integer or array)

131

- logits: log-probabilities for each category (array, mutually exclusive with probs)

132

- probs: probabilities for each category (array that sums to 1, mutually exclusive with logits)

133

- dtype: output data type (int or float)

134

135

Note: Exactly one of logits or probs must be specified.

136

"""

137

138

@property

139

def total_count(self): ...

140

@property

141

def logits(self): ...

142

@property

143

def probs(self): ...

144

@property

145

def event_shape(self): ...

146

```

147

148

### Softmax Distribution

149

150

Softmax distribution for normalized discrete outcomes.

151

152

```python { .api }

153

class Softmax(Distribution):

154

def __init__(self, logits, temperature=1.0):

155

"""

156

Softmax distribution.

157

158

Parameters:

159

- logits: unnormalized log-probabilities (array of shape [..., k])

160

- temperature: temperature parameter for softmax (positive float, default 1.0)

161

"""

162

163

@property

164

def logits(self): ...

165

@property

166

def temperature(self): ...

167

@property

168

def probs(self): ...

169

```