Sphinx extension to support docstrings in Numpy format
{
"context": "Evaluates how well the solution leverages numpydoc's docstring validation engine and error codes to gate documentation quality, and how cleanly it integrates the validation into a Sphinx build workflow. Points reward correct use of the library APIs, honoring configuration knobs, and producing meaningful summaries tied to the package's code-based diagnostics.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Validation API",
"description": "Uses numpydoc.validate.validate to run checks on the provided modules and returns structured results that include qualified object names, error codes (GL**, RT**, SS**), messages, and line numbers.",
"max_score": 30
},
{
"name": "Ignore Controls",
"description": "Honors ignore lists and inline \"numpydoc ignore=\" markers by passing them through to the validator or filtering on its outputs so specified codes drop while unrelated codes remain.",
"max_score": 20
},
{
"name": "Sphinx Hook",
"description": "Registers a Sphinx event handler (e.g., via app.connect) that invokes validation during the build and respects numpydoc Sphinx settings such as numpydoc_validation_checks/fail_on and numpydoc_validation_exclude when deciding which objects to scan.",
"max_score": 25
},
{
"name": "Fail/Warn Logic",
"description": "Differentiates fail_on versus warn_on codes using validation results, raising sphinx.errors.BuildWarning (or halting the build) for fail_on hits while emitting warnings for non-fatal codes.",
"max_score": 15
},
{
"name": "Reporting",
"description": "Aggregates validation output by code, produces totals per code class, and surfaces an overall status that flips to failed whenever any fail_on code appears.",
"max_score": 10
}
]
}tessl i tessl/pypi-numpydoc@1.9.0evals
scenario-1
scenario-2
scenario-3
scenario-4
scenario-5
scenario-6
scenario-7
scenario-8
scenario-9