Sphinx extension to support docstrings in Numpy format
{
"context": "Evaluates whether the solution wires numpydoc's citation deduplication hooks into a Sphinx app so doctrees get unique citation labels and cleaned backreferences. Focuses on calling the package's built-in handlers and citation configuration rather than custom string munging.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Autodoc citation hook",
"description": "Connects numpydoc's docstring citation handler (e.g., rename_references via autodoc processing) so citation labels are rewritten using the package's logic instead of manual parsing.",
"max_score": 25
},
{
"name": "Doctree relabel",
"description": "Invokes numpydoc.relabel_references during doctree-read (or equivalent) to replace hashed citation labels with per-object names, ensuring collisions are resolved by the package's relabeling.",
"max_score": 25
},
{
"name": "Backref cleanup",
"description": "Runs numpydoc.clean_backrefs on the resolved doctree so dangling or duplicate backreferences are removed by the package routine, not custom node pruning.",
"max_score": 20
},
{
"name": "Citation regex config",
"description": "Respects the numpydoc_citation_re configuration value (default or customized) when registering citation handling so detection of citation targets matches package expectations.",
"max_score": 15
},
{
"name": "Setup integration",
"description": "Registers the above handlers via the Sphinx setup flow (numpydoc.setup or app.connect usage) returning the proper metadata so the package manages event ordering and stability.",
"max_score": 15
}
]
}tessl i tessl/pypi-numpydoc@1.9.0evals
scenario-1
scenario-2
scenario-3
scenario-4
scenario-5
scenario-6
scenario-7
scenario-8
scenario-9