Sphinx extension to support docstrings in Numpy format
{
"context": "Evaluates whether the solution uses numpydoc's cross-referencing helpers to render NumPy-style docstrings with alias and ignore handling. Scoring rewards correct delegation to numpydoc xref APIs, proper merging of alias/ignore data with defaults, and keeping default linking behavior active for unmatched tokens.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Uses make_xref",
"description": "Type tokens are routed through numpydoc.xref.make_xref (or the xref-aware SphinxDocString path) instead of hand-built markup, producing role-wrapped links from the library.",
"max_score": 30
},
{
"name": "Alias merge",
"description": "Custom alias mappings are merged with numpydoc's DEFAULT_LINKS / numpydoc_xref_aliases so defaults remain available while overrides apply.",
"max_score": 25
},
{
"name": "Ignore honored",
"description": "Tokens listed in the provided ignore list or numpydoc_xref_ignore config are passed to the xref logic so they stay unlinked in the rendered output.",
"max_score": 20
},
{
"name": "Default linking",
"description": "Unmatched tokens still get default cross-reference roles by keeping numpydoc_xref_param_type (or equivalent flag) enabled when rendering.",
"max_score": 15
},
{
"name": "Docstring parsing",
"description": "Docstrings are parsed/rendered via numpydoc utilities (e.g., NumpyDocString or SphinxDocString) rather than custom parsers to ensure type sections follow library semantics.",
"max_score": 10
}
]
}tessl i tessl/pypi-numpydoc@1.9.0evals
scenario-1
scenario-2
scenario-3
scenario-4
scenario-5
scenario-6
scenario-7
scenario-8
scenario-9