tessl install tessl/pypi-vllm@0.10.0A high-throughput and memory-efficient inference and serving engine for LLMs
Agent Success
Agent success rate when using this tile
69%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.33x
Baseline
Agent success rate without this tile
52%
{
"context": "This criteria evaluates how well the engineer uses vLLM's memory management features to configure LLM instances with custom GPU memory utilization and CPU swap space settings.",
"type": "weighted_checklist",
"checklist": [
{
"name": "LLM class import",
"description": "Correctly imports the LLM class from the vllm package",
"max_score": 10
},
{
"name": "LLM initialization",
"description": "Creates LLM instances using the LLM constructor with the model_name parameter",
"max_score": 15
},
{
"name": "gpu_memory_utilization parameter",
"description": "Uses the gpu_memory_utilization parameter in the LLM constructor to control GPU memory allocation (passing float values like 0.7, 0.8)",
"max_score": 25
},
{
"name": "swap_space parameter",
"description": "Uses the swap_space parameter in the LLM constructor to configure CPU swap space (passing integer values representing GB)",
"max_score": 25
},
{
"name": "Combined configuration",
"description": "Correctly combines both gpu_memory_utilization and swap_space parameters in a single LLM initialization",
"max_score": 15
},
{
"name": "Default configuration",
"description": "Handles cases where no memory parameters are specified, allowing vLLM to use default settings",
"max_score": 10
}
]
}