or run

npx @tessl/cli init
Log in

Version

Tile

Overview

Evals

Files

docs

advanced-features.mdaws-integration.mdcircuits.mddevices-simulation.mdindex.mdquantum-information.md
tile.json

tessl/pypi-amazon-braket-sdk

An open source library for interacting with quantum computing devices on Amazon Braket

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/amazon-braket-sdk@1.101.x

To install, run

npx @tessl/cli install tessl/pypi-amazon-braket-sdk@1.101.0

index.mddocs/

Amazon Braket SDK

An open source library for interacting with quantum computing devices on Amazon Braket.

The Amazon Braket SDK provides a comprehensive Python interface for quantum computing, offering support for quantum circuits, AWS quantum devices, local simulation, analog Hamiltonian simulation, quantum annealing, and advanced features like pulse control and error mitigation.

Package Information

  • Package Name: amazon-braket-sdk
  • Package Type: pypi
  • Language: Python
  • Installation: pip install amazon-braket-sdk
  • Version: 1.101.0
  • License: Apache License 2.0
  • Python Support: 3.10, 3.11, 3.12, 3.13
  • Architecture: Namespace package structure

Core Imports

# Core SDK components
from braket._sdk import __version__

# Circuit construction and gates
from braket.circuits import Circuit, Gate, AngledGate, DoubleAngledGate
from braket.circuits.gates import H, CNot, Rx, Ry, Rz, X, Y, Z
from braket.circuits.observables import X as ObsX, Y as ObsY, Z as ObsZ, TensorProduct
from braket.circuits.result_types import StateVector, Expectation, Sample, Probability

# AWS integration
from braket.aws import AwsDevice, AwsQuantumTask, AwsSession, AwsDeviceType

# Local simulation
from braket.devices import LocalSimulator

# Quantum information utilities
from braket.quantum_information import PauliString

# Job management
from braket.jobs import hybrid_job

# Cost tracking
from braket.tracking import Tracker

# Parametric circuits and free parameters
from braket.circuits import FreeParameter, FreeParameterExpression, Parameterizable

# Program sets and parameter binding
from braket.program_sets import ProgramSet, ParameterSets, CircuitBinding

# Registers and qubit management
from braket.circuits import Qubit, QubitInput, QubitSet, QubitSetInput

# Circuit emulation and compilation
from braket.emulation import PassManager

# Timing data structures
from braket.timings import TimeSeries, TimeSeriesItem

Basic Usage Example

from braket.circuits import Circuit
from braket.circuits.gates import H, CNot
from braket.devices import LocalSimulator
from braket.aws import AwsDevice

# Create a Bell state circuit
def create_bell_circuit() -> Circuit:
    """
    Creates a Bell state quantum circuit.
    
    Returns:
        Circuit: A quantum circuit that creates a Bell state
    """
    circuit = Circuit()
    circuit.h(0)
    circuit.cnot(0, 1)
    return circuit

# Run on local simulator
def run_local_simulation(circuit: Circuit, shots: int = 1000) -> dict:
    """
    Run circuit on local simulator.
    
    Args:
        circuit: The quantum circuit to execute
        shots: Number of measurement shots
        
    Returns:
        dict: Measurement results
    """
    device = LocalSimulator()
    task = device.run(circuit, shots=shots)
    return task.result().measurement_counts

# Run on AWS device
def run_aws_device(circuit: Circuit, device_arn: str, shots: int = 1000) -> dict:
    """
    Run circuit on AWS quantum device.
    
    Args:
        circuit: The quantum circuit to execute
        device_arn: AWS device ARN
        shots: Number of measurement shots
        
    Returns:
        dict: Measurement results from AWS task
    """
    device = AwsDevice(device_arn)
    task = device.run(circuit, shots=shots)
    return task.result().measurement_counts

Architecture Overview

The Amazon Braket SDK is organized into 20 major modules:

Core Components

  1. Circuit Construction - Quantum circuits, gates, and measurements
  2. AWS Integration - Cloud quantum devices and task management
  3. Local Simulation - Local quantum simulators and device management
  4. Quantum Information - Pauli strings, parametric circuits, registers, and quantum utilities

Advanced Features

  1. Advanced Capabilities - AHS, annealing, pulse control, error mitigation, emulation, and experimental features

Core Capabilities

Quantum Circuit Construction

Build quantum circuits with a comprehensive gate library:

from braket.circuits import Circuit
from braket.circuits.gates import H, CNot, Rx, Ry, Rz, U
from braket.circuits.observables import Z, X
from braket.circuits.result_types import Expectation
import numpy as np

# Parameterized quantum circuit
def variational_circuit(params: list[float]) -> Circuit:
    """
    Creates a parameterized variational quantum circuit.
    
    Args:
        params: List of rotation parameters
        
    Returns:
        Circuit: Variational quantum circuit
    """
    circuit = Circuit()
    
    # Layer of Hadamard gates
    for qubit in range(2):
        circuit.h(qubit)
    
    # Parameterized rotation layers
    for i, param in enumerate(params):
        qubit = i % 2
        circuit.ry(qubit, param)
        
    # Entangling layer
    circuit.cnot(0, 1)
    
    # Observable measurement
    circuit.expectation(observable=Z(0) @ Z(1))
    
    return circuit

AWS Device Integration

Connect to quantum processors and simulators on AWS:

from braket.aws import AwsDevice, AwsDeviceType, AwsSession
from braket.circuits import Circuit

# Device discovery and selection
def get_available_devices() -> dict[str, AwsDevice]:
    """
    Get all available AWS Braket devices.
    
    Returns:
        dict: Mapping of device names to AwsDevice instances
    """
    # Get QPU devices
    qpu_devices = AwsDevice.get_devices(device_types=[AwsDeviceType.QPU])
    
    # Get simulator devices  
    sim_devices = AwsDevice.get_devices(device_types=[AwsDeviceType.SIMULATOR])
    
    devices = {}
    for device in qpu_devices + sim_devices:
        devices[device.name] = device
        
    return devices

# Session management
def create_aws_session(region: str = "us-east-1") -> AwsSession:
    """
    Create authenticated AWS session for Braket.
    
    Args:
        region: AWS region for quantum computing resources
        
    Returns:
        AwsSession: Authenticated session
    """
    return AwsSession(boto_session=None, braket_user_agents=None)

Hybrid Quantum Jobs

Execute hybrid quantum-classical algorithms:

from braket.jobs import hybrid_job, save_job_result, get_job_device_arn
from braket.aws import AwsDevice
from braket.circuits import Circuit

@hybrid_job(device="ml.m5.large")
def quantum_optimization_job():
    """
    Hybrid job for quantum optimization algorithm.
    
    This job runs a variational quantum algorithm combining
    quantum circuit execution with classical optimization.
    """
    # Get the quantum device for this job
    device_arn = get_job_device_arn()
    device = AwsDevice(device_arn)
    
    # Define cost function using quantum circuits
    def cost_function(params: list[float]) -> float:
        circuit = variational_circuit(params)
        task = device.run(circuit, shots=1000)
        result = task.result()
        return result.values[0]  # Expectation value
    
    # Classical optimization loop
    import scipy.optimize
    initial_params = [0.1, 0.2]
    result = scipy.optimize.minimize(cost_function, initial_params)
    
    # Save results
    save_job_result({
        "optimal_params": result.x.tolist(),
        "optimal_value": float(result.fun)
    })

Cost and Resource Tracking

Monitor quantum computing usage and costs:

from braket.tracking import Tracker
from braket.aws import AwsDevice
from braket.circuits import Circuit

def tracked_quantum_execution(circuit: Circuit, device_arn: str) -> dict:
    """
    Execute quantum circuit with cost tracking.
    
    Args:
        circuit: Quantum circuit to execute
        device_arn: AWS device ARN
        
    Returns:
        dict: Results including cost information
    """
    with Tracker() as tracker:
        # Execute quantum task
        device = AwsDevice(device_arn)
        task = device.run(circuit, shots=1000)
        result = task.result()
        
        # Get cost information
        cost_info = {
            "quantum_tasks_cost": tracker.quantum_tasks_cost(),
            "simulator_tasks_cost": tracker.simulator_tasks_cost(),
            "total_cost": tracker.quantum_tasks_cost() + tracker.simulator_tasks_cost()
        }
        
    return {
        "measurement_counts": result.measurement_counts,
        "cost_tracking": cost_info
    }

Key Features

  • Complete Gate Library: 50+ quantum gates including parameterized gates, multi-qubit gates, and custom unitary operations
  • Multiple Quantum Computing Paradigms: Gate model circuits, analog Hamiltonian simulation, quantum annealing, and photonic quantum computing
  • AWS Cloud Integration: Access to real quantum processors from IonQ, Rigetti, IBM, and AWS simulators
  • Local Development: High-performance local quantum simulators for circuit development and testing
  • Hybrid Algorithms: Seamless integration of quantum and classical computing for optimization and machine learning
  • Production Features: Cost tracking, job management, error mitigation, and experimental capabilities
  • Pulse-Level Control: Direct pulse sequence programming for supported quantum devices
  • Noise Modeling: Comprehensive noise models for realistic quantum circuit simulation

Documentation Structure

This documentation is organized into focused capability areas:

  • circuits.md - Circuit construction, quantum gates, observables, noise models, and result types
  • aws-integration.md - AWS devices, quantum tasks, sessions, jobs, and cost tracking
  • devices-simulation.md - Device management, local simulators, and emulation capabilities
  • quantum-information.md - Pauli strings, quantum information utilities, and mathematical tools
  • advanced-features.md - Analog Hamiltonian simulation, quantum annealing, pulse control, and error mitigation

Each documentation section provides complete API coverage with type definitions, usage patterns, and practical examples for AI agent consumption.