tessl install tessl/pypi-python-levenshtein@0.27.0Python compatibility wrapper for computing string edit distances and similarities using fast Levenshtein algorithms.
Agent Success
Agent success rate when using this tile
88%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.38x
Baseline
Agent success rate without this tile
64%
{
"context": "This criteria evaluates how well the engineer uses the python-Levenshtein package's custom edit cost capabilities, specifically the insertion_cost, deletion_cost, and substitution_cost parameters of the distance function. The focus is entirely on proper usage of these package-specific features.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Uses Levenshtein.distance",
"description": "Implementation calls the Levenshtein.distance() function to compute edit distances rather than implementing a custom algorithm",
"max_score": 30
},
{
"name": "Passes insertion_cost parameter",
"description": "Correctly passes the insertion_cost parameter to Levenshtein.distance() using the insertion_cost keyword argument",
"max_score": 20
},
{
"name": "Passes deletion_cost parameter",
"description": "Correctly passes the deletion_cost parameter to Levenshtein.distance() using the deletion_cost keyword argument",
"max_score": 20
},
{
"name": "Passes substitution_cost parameter",
"description": "Correctly passes the substitution_cost parameter to Levenshtein.distance() using the substitution_cost keyword argument",
"max_score": 20
},
{
"name": "Correct parameter mapping",
"description": "Maps the function's custom cost parameters correctly to the Levenshtein.distance() function without swapping or misaligning parameters",
"max_score": 10
}
]
}