or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/python-levenshtein@0.27.x
tile.json

tessl/pypi-python-levenshtein

tessl install tessl/pypi-python-levenshtein@0.27.0

Python compatibility wrapper for computing string edit distances and similarities using fast Levenshtein algorithms.

Agent Success

Agent success rate when using this tile

88%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.38x

Baseline

Agent success rate without this tile

64%

rubric.jsonevals/scenario-6/

{
  "context": "This evaluation assesses how well an engineer uses the Levenshtein package's hamming() function to solve a DNA mutation detection problem. The focus is entirely on correct usage of the package API, not on general code quality or style.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Uses hamming() function",
      "description": "The solution uses Levenshtein.hamming() to count the differences between two equal-length strings",
      "max_score": 40
    },
    {
      "name": "Correct function import",
      "description": "Properly imports the Levenshtein package (e.g., 'import Levenshtein' or 'from Levenshtein import hamming')",
      "max_score": 15
    },
    {
      "name": "Correct parameter passing",
      "description": "Passes the two sequence strings as parameters to hamming() in the correct order",
      "max_score": 15
    },
    {
      "name": "Handles length validation",
      "description": "Validates that sequences are equal length before calling hamming(), or handles the ValueError that hamming() raises for unequal lengths",
      "max_score": 20
    },
    {
      "name": "Handles empty sequences",
      "description": "Validates that sequences are not empty before processing, raising ValueError as specified",
      "max_score": 10
    }
  ]
}