or run

tessl search
Log in

Version

Workspace
tessl
Visibility
Public
Created
Last updated
Describes
pypipkg:pypi/python-levenshtein@0.27.x
tile.json

tessl/pypi-python-levenshtein

tessl install tessl/pypi-python-levenshtein@0.27.0

Python compatibility wrapper for computing string edit distances and similarities using fast Levenshtein algorithms.

Agent Success

Agent success rate when using this tile

88%

Improvement

Agent success rate improvement when using this tile compared to baseline

1.38x

Baseline

Agent success rate without this tile

64%

rubric.jsonevals/scenario-3/

{
  "context": "This criteria evaluates how well the engineer uses the Levenshtein package's seqratio() function to implement order-sensitive sequence similarity analysis for document revision comparison.",
  "type": "weighted_checklist",
  "checklist": [
    {
      "name": "Uses seqratio function",
      "description": "The implementation uses Levenshtein.seqratio() to compute similarity between sequences of words",
      "max_score": 40
    },
    {
      "name": "Correct similarity computation",
      "description": "The compute_similarity() function correctly passes the two document word lists to seqratio() and returns the similarity score",
      "max_score": 25
    },
    {
      "name": "Find most similar implementation",
      "description": "The find_most_similar() function correctly uses seqratio() to compare the target with each candidate and returns the index of the candidate with the highest similarity score",
      "max_score": 25
    },
    {
      "name": "Preserves sequence order",
      "description": "The implementation correctly uses seqratio() rather than setratio(), ensuring word order is preserved in similarity calculations",
      "max_score": 10
    }
  ]
}