tessl install tessl/pypi-python-levenshtein@0.27.0Python compatibility wrapper for computing string edit distances and similarities using fast Levenshtein algorithms.
Agent Success
Agent success rate when using this tile
88%
Improvement
Agent success rate improvement when using this tile compared to baseline
1.38x
Baseline
Agent success rate without this tile
64%
{
"context": "This criteria evaluates how effectively the engineer uses the python-Levenshtein package's ratio() function to implement a duplicate detection system. The focus is on proper usage of the similarity ratio calculation capabilities to solve the product matching problem.",
"type": "weighted_checklist",
"checklist": [
{
"name": "Uses Levenshtein.ratio()",
"description": "The calculate_similarity() function uses Levenshtein.ratio() to compute similarity between two strings",
"max_score": 30
},
{
"name": "Correct return type",
"description": "The calculate_similarity() function returns a float value between 0.0 and 1.0 as produced by Levenshtein.ratio()",
"max_score": 10
},
{
"name": "Threshold comparison logic",
"description": "The is_duplicate() function correctly compares the similarity score against the threshold parameter to determine duplicates",
"max_score": 20
},
{
"name": "Reuses similarity calculation",
"description": "The is_duplicate() function calls calculate_similarity() or uses Levenshtein.ratio() to get the similarity score rather than reimplementing the logic",
"max_score": 15
},
{
"name": "Catalog iteration",
"description": "The find_duplicates() function iterates through the catalog list and calculates similarity for each item against the target",
"max_score": 15
},
{
"name": "Filtering by threshold",
"description": "The find_duplicates() function correctly filters catalog items to include only those with similarity scores at or above the threshold",
"max_score": 10
}
]
}